論文の概要: Nurse-in-the-Loop Artificial Intelligence for Precision Management of
Type 2 Diabetes in a Clinical Trial Utilizing Transfer-Learned Predictive
Digital Twin
- arxiv url: http://arxiv.org/abs/2401.02661v1
- Date: Fri, 5 Jan 2024 06:38:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 15:57:25.679980
- Title: Nurse-in-the-Loop Artificial Intelligence for Precision Management of
Type 2 Diabetes in a Clinical Trial Utilizing Transfer-Learned Predictive
Digital Twin
- Title(参考訳): 輸血学習型予測デジタル双生児を用いた2型糖尿病の精密管理のためのニューラルネットワーク
- Authors: Syed Hasib Akhter Faruqui, Adel Alaeddini, Yan Du, Shiyu Li, Kumar
Sharma, Jing Wang
- Abstract要約: 本研究は, 予測ディジタルツイン(PDT)を利用したオンラインナース・イン・ザ・ループ予測制御(ONLC)モデルを開発した。
PDTは、最初の3ヶ月から参加者の自己モニタリングデータ(体重、食物ログ、身体活動、グルコース)をトレーニングした。
ONLCは介入グループに個別のフィードバックとテキストメッセージによるレコメンデーションを提供した。
- 参考スコア(独自算出の注目度): 5.521385406191426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Type 2 diabetes (T2D) is a prevalent chronic disease with a
significant risk of serious health complications and negative impacts on the
quality of life. Given the impact of individual characteristics and lifestyle
on the treatment plan and patient outcomes, it is crucial to develop precise
and personalized management strategies. Artificial intelligence (AI) provides
great promise in combining patterns from various data sources with nurses'
expertise to achieve optimal care. Methods: This is a 6-month ancillary study
among T2D patients (n = 20, age = 57 +- 10). Participants were randomly
assigned to an intervention (AI, n=10) group to receive daily AI-generated
individualized feedback or a control group without receiving the daily feedback
(non-AI, n=10) in the last three months. The study developed an online
nurse-in-the-loop predictive control (ONLC) model that utilizes a predictive
digital twin (PDT). The PDT was developed using a transfer-learning-based
Artificial Neural Network. The PDT was trained on participants self-monitoring
data (weight, food logs, physical activity, glucose) from the first three
months, and the online control algorithm applied particle swarm optimization to
identify impactful behavioral changes for maintaining the patient's glucose and
weight levels for the next three months. The ONLC provided the intervention
group with individualized feedback and recommendations via text messages. The
PDT was re-trained weekly to improve its performance. Findings: The trained
ONLC model achieved >=80% prediction accuracy across all patients while the
model was tuned online. Participants in the intervention group exhibited a
trend of improved daily steps and stable or improved total caloric and total
carb intake as recommended.
- Abstract(参考訳): 背景: 2型糖尿病(T2D)は、重篤な合併症のリスクと生活の質に負の影響を及ぼす慢性疾患である。
個別の特徴とライフスタイルが治療計画や患者の成果に与える影響を考えると、精密でパーソナライズドな管理戦略を開発することが不可欠である。
人工知能(AI)は、さまざまなデータソースのパターンと看護師の専門知識を組み合わせることで、最適なケアを実現するという大きな約束を提供する。
方法: T2D 患者 (n = 20 歳 = 57 +-10) の6カ月間の補助研究である。
介入群(AI, n=10)にランダムに割り振られ, 過去3カ月間, 日常的なフィードバック(非AI, n=10)を受けずに, 日常的なAIによる個別のフィードバックや制御群が得られた。
本研究は, 予測デジタル双対(PDT)を利用したオンラインナース・イン・ザ・ループ予測制御(ONLC)モデルを開発した。
PDTはトランスファーラーニングに基づくニューラルネットワークを用いて開発された。
PDTは、最初の3ヶ月から参加者の自己監視データ(体重、食物ログ、身体活動、グルコース)をトレーニングし、オンライン制御アルゴリズムは、今後3ヶ月間、患者の血糖値と体重レベルを維持するための影響のある行動変化を特定するために、粒子群最適化を適用した。
ONLCは介入グループに個別のフィードバックとテキストメッセージによるレコメンデーションを提供した。
PDTは性能を改善するために毎週再訓練された。
結果: トレーニングしたONLCモデルは, オンライン調整中に全患者の80%の予測精度を達成した。
介入グループの参加者は, 日常の歩数の改善傾向を示し, 総カロリー摂取量および総炭水化物摂取量を推奨した。
関連論文リスト
- Pre-Ictal Seizure Prediction Using Personalized Deep Learning [0.0]
世界中で約2300万ないし30%のてんかん患者が薬剤抵抗性てんかん(DRE)を患っている
発作発生の予測不可能さは、安全上の問題や社会的懸念を引き起こし、DRE患者のライフスタイルを制限している。
本研究の目的は、開始から最大2時間前に発作を予測するための改良された技術と方法を使用することであった。
論文 参考訳(メタデータ) (2024-10-07T21:04:41Z) - Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission [0.0]
本研究はDiabetes 130-US Hospitalsデータセットを用いて,各種機械学習モデルによる寛解患者の分析と予測を行う。
LightGBMは、XGBoostが首位だったのに対して、従来のモデルとしてはベストだった。
本研究は,予測医療モデリングにおいて,モデル選択,検証,解釈可能性が重要なステップであることを示す。
論文 参考訳(メタデータ) (2024-06-28T15:06:22Z) - Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach [13.363740869325646]
新たに診断された1型糖尿病(T1D)患者は、効果的な血液グルコース(BG)予測モデルを得るのに苦慮することが多い。
Asynchronous Decentralized Federated Learning による血糖予測である「GluADFL」を提案する。
論文 参考訳(メタデータ) (2024-06-21T17:57:39Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
我々は、PD患者の症状と、神経科医が提供した処方薬を収集し、データセットを構築した。
そこで我々は、観察された症状と処方薬との関係を学習し、新しいコンピュータ支援処方薬モデルを構築した。
新来の患者に対しては、処方薬モデルにより、観察された症状に対して適切な処方薬を推奨できる(予測)。
論文 参考訳(メタデータ) (2020-07-31T14:34:35Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
動的治療体制 (DTR) はパーソナライズされ適応された多段階の治療計画であり、治療決定を個人の初期特徴に適応させ、その後の各段階における中間結果と特徴に適応させる。
本稿では,探索と搾取を慎重にバランスさせることで,遷移モデルと報酬モデルが線形である場合に,速度-最適後悔を実現する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-06T13:03:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。