Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
- URL: http://arxiv.org/abs/2401.02803v2
- Date: Wed, 10 Jan 2024 14:12:07 GMT
- Title: Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
- Authors: Randy Kuang, Maria Perepechaenko, Dafu Lou, Brinda Tank,
- Abstract summary: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS)
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes.
- Score: 0.6990493129893112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a specialized variant of Multivariate Public Key Cryptography (MPKC), intricately associated with two vector spaces: the polynomial vector space for the secret exchange and the multivariate vector space for randomized encapsulation. The unique integration of asymmetric, symmetric, and homomorphic cryptography within HPPK necessitates a careful examination of its performance metrics. This study focuses on the thorough benchmarking of HPPK KEM and DS across key cryptographic operations, encompassing key generation, encapsulation, decapsulation, signing, and verification. The results highlight the exceptional efficiency of HPPK, characterized by compact key sizes, cipher sizes, and signature sizes. The use of symmetric encryption in HPPK enhances its overall performance. Key findings underscore the outstanding performance of HPPK KEM and DS across various security levels, emphasizing their superiority in crucial cryptographic operations. This research positions HPPK as a promising and competitive solution for post-quantum cryptographic applications in a wide range of applications, including blockchain, digital currency, and Internet of Things (IoT) devices.
Related papers
- MeToken: Uniform Micro-environment Token Boosts Post-Translational Modification Prediction [65.33218256339151]
Post-translational modifications (PTMs) profoundly expand the complexity and functionality of the proteome.
Existing computational approaches predominantly focus on protein sequences to predict PTM sites, driven by the recognition of sequence-dependent motifs.
We introduce the MeToken model, which tokenizes the micro-environment of each acid, integrating both sequence and structural information into unified discrete tokens.
arXiv Detail & Related papers (2024-11-04T07:14:28Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Implementation of Entropically Secure Encryption: Securing Personal Health Data [0.704590071265998]
Entropically Secure Encryption (ESE) offers unconditional security with shorter keys to the One-Time Pad.
We present the first implementation of ESE for bulk encryption.
arXiv Detail & Related papers (2024-04-04T12:07:33Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - QPP and HPPK: Unifying Non-Commutativity for Quantum-Secure Cryptography
with Galois Permutation Group [0.0]
We leverage two novel primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS)
QPP achieves quantum-secure symmetric key encryption, seamlessly extending Shannon's perfect secrecy to both classical and quantum-native systems.
HPPK, free from NP-hard problems, fortifies symmetric encryption for the plain public key.
arXiv Detail & Related papers (2024-02-02T19:10:43Z) - Leveraging a Randomized Key Matrix to Enhance the Security of Symmetric Substitution Ciphers [0.0]
An innovative strategy to enhance the security of symmetric substitution ciphers is presented.
It is implemented through the implementation of a randomized key matrix suitable for various file formats.
arXiv Detail & Related papers (2023-11-29T21:13:38Z) - Homomorphic Polynomial Public Key Cryptography for Quantum-secure Digital Signature [0.7864304771129751]
In their 2022 study, Kuang et al. introduced Multivariable Polynomial Public Key (MPPK) cryptography.
They extended MPPK into Homomorphic Polynomial Public Key (HPPK), employing homomorphic encryption for large hidden ring operations.
arXiv Detail & Related papers (2023-11-15T13:54:23Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
We show that targetcollapsing enables publiclyverifiable deletion (PVD)
We build on this framework to obtain a variety of primitives supporting publiclyverifiable deletion from weak cryptographic assumptions.
arXiv Detail & Related papers (2023-03-15T15:00:20Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.