A Key Encapsulation Mechanism from Low Density Lattice Codes
- URL: http://arxiv.org/abs/2412.04979v1
- Date: Fri, 06 Dec 2024 11:56:25 GMT
- Title: A Key Encapsulation Mechanism from Low Density Lattice Codes
- Authors: Reza Hooshmand,
- Abstract summary: Key Encapsulation Mechanisms (KEMs) are a set of cryptographic techniques that are designed to provide symmetric encryption key using asymmetric mechanism (public key)
This paper focuses on design and analysis of key encapsulation mechanism from low density lattice codes (KEM-LDLC) to go down the key size by keeping an acceptable level of security.
- Score: 0.0
- License:
- Abstract: Key Encapsulation Mechanisms (KEMs) are a set of cryptographic techniques that are designed to provide symmetric encryption key using asymmetric mechanism (public key). In the current study, we concentrate on design and analysis of key encapsulation mechanism from low density lattice codes (KEM-LDLC) to go down the key size by keeping an acceptable level of security. The security of the proposed KEM-LDLC relies on the difficulty of solving the closest vector problem (CVP) and the shortest basis problem (SBP) of the lattices. Furthermore, this paper discusses other performance analyses results such as key size, error performance, and computational complexity, as well as conventional security analysis against applied attacks. Reducing the key size is performed by two approaches: (i) saving the generation sequence of the latin square LDLCs parity-check matrix of as a part of the secret key set; (ii) using the hermite normal form (HNF) of the latin square LDLCs generator matrix as part of the public key set. These enhancements enable us to attain greater efficiency and security compared to earlier code-based KEMs.
Related papers
- Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Secure Composition of Quantum Key Distribution and Symmetric Key Encryption [3.6678562499684517]
Quantum key distribution (QKD) allows Alice and Bob to share a secret key over an insecure channel with proven information-theoretic security against an adversary whose strategy is bounded only by the laws of physics.
We consider the problem of using the QKD established key with a secure symmetric key-based encryption algorithm and use an approach based on hybrid encryption to provide a proof of security for the composition.
arXiv Detail & Related papers (2025-01-14T20:58:02Z) - Post-Quantum Key Agreement Protocols Based on Modified Matrix-Power Functions over Singular Random Integer Matrix Semirings [0.0]
Post-quantum cryptography is essential for securing digital communications against threats posed by quantum computers.
This paper introduces two novel post-quantum key agreement protocols that can be easily implemented on standard computers.
arXiv Detail & Related papers (2025-01-04T14:01:09Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes [0.6990493129893112]
Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS)
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes.
arXiv Detail & Related papers (2024-01-05T13:36:18Z) - CCA-Secure Hybrid Encryption in Correlated Randomness Model and KEM Combiners [3.837357895668154]
A hybrid encryption (HE) system is an efficient public key encryption system for arbitrarily long messages.
The HE encryption algorithm uses a KEM generated key k to encapsulate the message using DEM.
The KEM/DEM composition theorem proves that if KEM and DEM satisfy well-defined security notions, then HE will be secure with well defined security.
arXiv Detail & Related papers (2024-01-02T01:16:52Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Loss-tolerant quantum key distribution with a twist [0.0]
We provide an extension of the loss-tolerant protocol [Phys. Rev. A 90, 052314 (2014)], a leading proof technique for analyzing the security of QKD, to MDI QKD protocols that employ mixed signal states.
We find that the mixed states can be interpreted as providing Alice and Bob with a virtual shield system they can employ to reduce Eve's knowledge of the secret key.
arXiv Detail & Related papers (2020-07-16T12:37:43Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.