Generation of massively entangled bright states of light during harmonic generation in resonant media
- URL: http://arxiv.org/abs/2401.02817v3
- Date: Fri, 13 Dec 2024 08:24:53 GMT
- Title: Generation of massively entangled bright states of light during harmonic generation in resonant media
- Authors: Sili Yi, Nikolai D. Klimkin, Graham Gardiner Brown, Olga Smirnova, Serguei Patchkovskii, Ihar Babushkin, Misha Ivanov,
- Abstract summary: We show how nonlinear optical response of matter can be controlled to generate entangled harmonics of the incident laser light.
Our analysis opens remarkable opportunities at the interface of attosecond physics and quantum optics, with implications for quantum information science.
- Score: 0.0
- License:
- Abstract: At the fundamental level, full description of light-matter interaction requires quantum treatment of both matter and light. However, for standard light sources generating intense laser pulses carrying quadrillions of photons in a coherent state, the classical description of light during intense laser-matter interaction has been expected to be adequate. Here we show how nonlinear optical response of matter can be controlled to generate dramatic deviations from this standard picture, including generation of several squeezed and entangled harmonics of the incident laser light. In particular, such non-trivial quantum states of harmonics are generated as soon as one of the harmonics induces a transition between different laser-dressed states of the material system. Such transitions generate an entangled light-matter wavefunction, which can generate quantum states of harmonics even in the absence of a quantum driving field or material correlations. In turn, entanglement of the material system with a single harmonic generates and controls entanglement between different harmonics. Hence, nonlinear media that are near-resonant with at least one of the harmonics appear to be quite attractive for controlled generation of massively entangled quantum states of light. Our analysis opens remarkable opportunities at the interface of attosecond physics and quantum optics, with implications for quantum information science.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Evidence of the quantum-optical nature of high-harmonic generation [0.0]
We show that high-harmonic generation can generate non-classical states of light before the decoherence of the system.
This could address challenges in quantum technology such as scalability, decoherence or the generation of massively entangled states.
arXiv Detail & Related papers (2024-05-23T19:53:45Z) - Absence of quantum optical coherence in high harmonic generation [0.0]
We introduce the notion of quantum optical coherence into high harmonic generation.
We show that high harmonics can be generated from incoherent radiation despite having a vanishing electric field.
arXiv Detail & Related papers (2023-09-10T12:16:32Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Nonclassical light generation and control from laser-driven
semiconductor intraband excitations [0.0]
We investigate the generation of higher-order harmonics from a quantum optics perspective.
We find intricate but sufficiently mild modifications of the fundamental mode and coherent displacements.
Similar to high-harmonic generation in atoms, all radiation field modes are entangled, allowing for potential novel protocols for quantum information processing.
arXiv Detail & Related papers (2022-11-11T12:59:15Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Boosting entanglement generation in down-conversion with incoherent
illumination [0.0]
Entangled photons produced by spontaneous parametric down-conversion have been of paramount importance for our current understanding of quantum mechanics and advances in quantum information.
We show that when a novel class of partially coherent Gaussian pump beams is considered, a distinct type of quantum state can be generated for which the amount of entanglement increases inversely with the degree of coherence of the pump beam.
This leads to highly incoherent yet highly entangled multi-photon states, which should have interesting consequences for photonic quantum information science.
arXiv Detail & Related papers (2020-06-25T15:28:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.