論文の概要: Nonlinear functional regression by functional deep neural network with
kernel embedding
- arxiv url: http://arxiv.org/abs/2401.02890v1
- Date: Fri, 5 Jan 2024 16:43:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 14:54:33.658926
- Title: Nonlinear functional regression by functional deep neural network with
kernel embedding
- Title(参考訳): 核埋め込み型関数型ディープニューラルネットワークによる非線形関数回帰
- Authors: Zhongjie Shi, Jun Fan, Linhao Song, Ding-Xuan Zhou, Johan A.K. Suykens
- Abstract要約: 本稿では,効率的かつ完全なデータ依存型次元減少法を備えた機能的ディープニューラルネットワークを提案する。
機能ネットのアーキテクチャは、カーネル埋め込みステップ、プロジェクションステップ、予測のための深いReLUニューラルネットワークで構成される。
スムーズなカーネル埋め込みを利用することで、我々の関数ネットは離散化不変であり、効率的で、頑健でノイズの多い観測が可能となる。
- 参考スコア(独自算出の注目度): 20.306390874610635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of deep learning in various fields of science and
technology, such as speech recognition, image classification, and natural
language processing, recently it is also widely applied in the functional data
analysis (FDA) with some empirical success. However, due to the infinite
dimensional input, we need a powerful dimension reduction method for functional
learning tasks, especially for the nonlinear functional regression. In this
paper, based on the idea of smooth kernel integral transformation, we propose a
functional deep neural network with an efficient and fully data-dependent
dimension reduction method. The architecture of our functional net consists of
a kernel embedding step: an integral transformation with a data-dependent
smooth kernel; a projection step: a dimension reduction by projection with
eigenfunction basis based on the embedding kernel; and finally an expressive
deep ReLU neural network for the prediction. The utilization of smooth kernel
embedding enables our functional net to be discretization invariant, efficient,
and robust to noisy observations, capable of utilizing information in both
input functions and responses data, and have a low requirement on the number of
discrete points for an unimpaired generalization performance. We conduct
theoretical analysis including approximation error and generalization error
analysis, and numerical simulations to verify these advantages of our
functional net.
- Abstract(参考訳): 近年, 音声認識, 画像分類, 自然言語処理などの科学・技術分野におけるディープラーニングの急速な発展に伴い, 機能的データ分析 (FDA) にも応用され, 実証的な成功を収めている。
しかし、無限次元入力のため、特に非線形機能回帰において、関数型学習タスクに強力な次元還元法が必要である。
本稿では,スムースなカーネル積分変換の考え方に基づいて,効率良くデータ依存次元低減手法を備えた関数型深層ニューラルネットワークを提案する。
機能ネットのアーキテクチャは、データ依存の滑らかなカーネルによる積分変換、投影ステップ、埋め込みカーネルに基づく固有関数に基づく投影による次元縮小、そして最後に予測のための表現豊かな深部ReLUニューラルネットワークからなる。
このスムーズなカーネル埋め込みの利用により、我々の関数ネットは離散化不変であり、効率的で、ノイズの多い観測が可能であり、入力関数と応答データの両方の情報を活用でき、未経験の一般化性能の離散点数に対する要求が低い。
近似誤差や一般化誤差解析を含む理論的解析を行い,関数ネットの利点を検証するために数値シミュレーションを行う。
関連論文リスト
- An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
本稿では、非パラメトリック回帰問題に対処するテンソルニューラルネットワーク(TNN)を提案する。
TNNは従来のFeed-Forward Networks (FFN) や Radial Basis Function Networks (RBN) よりも優れた性能を示している。
このアプローチにおける重要な革新は、統計回帰とTNNフレームワーク内の数値積分の統合である。
論文 参考訳(メタデータ) (2024-06-14T03:38:40Z) - Deep Sketched Output Kernel Regression for Structured Prediction [21.93695380726788]
カーネルによる損失は、構造化された出力予測タスクを定義するための原則化された方法を提供する。
我々は、構造化出力予測タスクを解決するためにニューラルネットワークをトレーニングする方法の課題に取り組む。
論文 参考訳(メタデータ) (2024-06-13T15:56:55Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
我々は,多次元関数型データを分類するFDNN(Functional Deep Neural Network)と呼ばれる新しい手法を提案する。
具体的には、将来のデータ関数のクラスラベルを予測するために使用されるトレーニングデータの原則コンポーネントに基づいて、ディープニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2022-05-17T19:22:48Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
従来のNystr"om式に基づく非パラメトリックなソリューションはスケーラビリティの問題に悩まされる。
最近の研究はパラメトリックなアプローチ、すなわち固有関数を近似するためにニューラルネットワークを訓練している。
教師なしおよび教師なしの学習問題の空間に一般化する新たな目的関数を用いて,これらの問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-04-30T05:31:07Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
2層ニューラルネットワークによる関数近似について検討する。
この結果は線形(あるいは可溶性次元)法で達成できることを大幅に改善する。
論文 参考訳(メタデータ) (2021-07-14T03:03:56Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - CDiNN -Convex Difference Neural Networks [0.8122270502556374]
reluアクティベーション関数を持つニューラルネットワークは、普遍関数近似が非スムース関数として関数マッピングを学ぶことが示されている。
ICNNと呼ばれる新しいニューラルネットワークアーキテクチャは、凸入力として出力を学習する。
論文 参考訳(メタデータ) (2021-03-31T17:31:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。