論文の概要: Deep Reinforcement Learning for Local Path Following of an Autonomous
Formula SAE Vehicle
- arxiv url: http://arxiv.org/abs/2401.02903v1
- Date: Fri, 5 Jan 2024 17:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 14:40:46.154979
- Title: Deep Reinforcement Learning for Local Path Following of an Autonomous
Formula SAE Vehicle
- Title(参考訳): 自律型フォーミュラSAE車両の局所経路追従のための深部強化学習
- Authors: Harvey Merton, Thomas Delamore, Karl Stol and Henry Williams
- Abstract要約: 本稿では, ディープ強化学習(DRL)と逆強化学習(IRL)を用いて, ローカルに観測されたコーンの位置を, レーストラック追従のための所望の操舵角度にマッピングする。
シミュレーションと実世界で行われたテストでは、両方のアルゴリズムがローカルパスのモデルトレーニングに成功していることを示唆している。
- 参考スコア(独自算出の注目度): 0.36868085124383626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the continued introduction of driverless events to Formula:Society of
Automotive Engineers (F:SAE) competitions around the world, teams are
investigating all aspects of the autonomous vehicle stack. This paper presents
the use of Deep Reinforcement Learning (DRL) and Inverse Reinforcement Learning
(IRL) to map locally-observed cone positions to a desired steering angle for
race track following. Two state-of-the-art algorithms not previously tested in
this context: soft actor critic (SAC) and adversarial inverse reinforcement
learning (AIRL), are used to train models in a representative simulation. Three
novel reward functions for use by RL algorithms in an autonomous racing context
are also discussed. Tests performed in simulation and the real world suggest
that both algorithms can successfully train models for local path following.
Suggestions for future work are presented to allow these models to scale to a
full F:SAE vehicle.
- Abstract(参考訳): 世界中の自動車技術者の社会(f:sae)コンペティションにおいて、チームは自動運転車スタックのあらゆる側面を調査している。
本稿では, ディープ強化学習(DRL)と逆強化学習(IRL)を用いて, ローカルに観測されたコーンの位置を, レーストラック追従のための所望の操舵角度にマッピングする。
ソフトアクター評論家 (SAC) と逆逆強化学習 (AIRL) の2つの最先端アルゴリズムは、代表シミュレーションでモデルを訓練するために使用される。
自律走行環境でrlアルゴリズムが使用する3つの新しい報酬関数についても論じる。
シミュレーションと実世界のテストは、どちらのアルゴリズムもローカルパス追従のモデルをうまくトレーニングできることを示唆している。
これらのモデルがフルF:SAE車両にスケールできるようにするため、今後の研究が提案されている。
関連論文リスト
- Racing Towards Reinforcement Learning based control of an Autonomous
Formula SAE Car [1.0124625066746598]
本稿では,自動レースカーのエンド・ツー・エンド制御における深層強化学習(RL)の活用に関する最初の研究について述べる。
本稿では,Turtlebot2プラットフォーム上でのフルスケール設計に類似したトラック上で,2つの最先端RLアルゴリズムをシミュレーションで訓練する。
その結果,本手法はシミュレーションでレースを学習し,物理プラットフォーム上で現実の競馬場に移動することに成功した。
論文 参考訳(メタデータ) (2023-08-24T21:16:03Z) - Action and Trajectory Planning for Urban Autonomous Driving with
Hierarchical Reinforcement Learning [1.3397650653650457]
本稿では,階層型強化学習法(atHRL)を用いた行動・軌道プランナを提案する。
我々は、複雑な都市運転シナリオにおける広範な実験を通して、atHRLの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2023-06-28T07:11:02Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
本研究では、DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装、評価、比較を行う。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
論文 参考訳(メタデータ) (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
我々は、オフロード自動運転の視覚的現実的ギャップを横断するRCANを再想像するSim2Segを紹介する。
これは、ランダム化されたシミュレーション画像をシミュレートされたセグメンテーションと深さマップに変換する学習によって行われる。
これにより、シミュレーションでエンドツーエンドのRLポリシーをトレーニングし、現実世界に直接デプロイできます。
論文 参考訳(メタデータ) (2022-10-25T17:50:36Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Formula RL: Deep Reinforcement Learning for Autonomous Racing using
Telemetry Data [4.042350304426975]
この問題を,車両のテレメトリと連続的な動作空間からなる多次元入力を用いて強化学習タスクとして構成する。
我々は,2つの実験において,Deep Deterministic Policy gradient (DDPG) の10変種をレースに投入した。
研究によると、rlでトレーニングされたモデルは、オープンソースの手作りロボットよりも高速に運転できるだけでなく、未知のトラックに一般化できる。
論文 参考訳(メタデータ) (2021-04-22T14:40:12Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
アイドルヘイリングプラットフォーム上での現実世界の車両の深層強化学習と意思決定時間計画に基づく新しい実用的枠組みを提示する。
本手法は,重み付きバッチ学習アルゴリズムを用いて乗車時の状態値関数を学習する。
配車シミュレーション環境におけるベースラインでアルゴリズムをベンチマークし、収益効率の向上における優位性を実証します。
論文 参考訳(メタデータ) (2021-03-08T05:34:05Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
本稿では,多忙なラウンドアバウンドの入場を交渉できる演習計画モジュールを提案する。
提案されたモジュールは、トレーニングされたニューラルネットワークに基づいて、操作の全期間にわたって、ラウンドアバウンドに入るタイミングと方法を予測する。
論文 参考訳(メタデータ) (2020-01-03T11:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。