H2G2-Net: A Hierarchical Heterogeneous Graph Generative Network Framework for Discovery of Multi-Modal Physiological Responses
- URL: http://arxiv.org/abs/2401.02905v2
- Date: Sun, 03 Nov 2024 02:26:07 GMT
- Title: H2G2-Net: A Hierarchical Heterogeneous Graph Generative Network Framework for Discovery of Multi-Modal Physiological Responses
- Authors: Haidong Gu, Nathan Gaw, Yinan Wang, Chancellor Johnstone, Christine Beauchene, Sophia Yuditskaya, Hrishikesh Rao, Chun-An Chou,
- Abstract summary: We propose a hierarchical heterogeneous graph generative network (H2G2-Net) that automatically learns a graph structure without domain knowledge.
We validate the proposed method on the CogPilot dataset that consists of multi-modal physiological signals.
- Score: 3.7110156663640574
- License:
- Abstract: Discovering human cognitive and emotional states using multi-modal physiological signals draws attention across various research applications. Physiological responses of the human body are influenced by human cognition and commonly used to analyze cognitive states. From a network science perspective, the interactions of these heterogeneous physiological modalities in a graph structure may provide insightful information to support prediction of cognitive states. However, there is no clue to derive exact connectivity between heterogeneous modalities and there exists a hierarchical structure of sub-modalities. Existing graph neural networks are designed to learn on non-hierarchical homogeneous graphs with pre-defined graph structures; they failed to learn from hierarchical, multi-modal physiological data without a pre-defined graph structure. To this end, we propose a hierarchical heterogeneous graph generative network (H2G2-Net) that automatically learns a graph structure without domain knowledge, as well as a powerful representation on the hierarchical heterogeneous graph in an end-to-end fashion. We validate the proposed method on the CogPilot dataset that consists of multi-modal physiological signals. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art GNNs by 5%-20% in prediction accuracy.
Related papers
- HDGL: A hierarchical dynamic graph representation learning model for
brain disorder classification [1.7495515703051119]
We propose a hierarchical dynamic graph representation learning (HDGL) model, which is the first model designed to address all the aforementioned challenges.
We evaluate the performance of the proposed model on the ABIDE and ADHD-200 datasets.
arXiv Detail & Related papers (2023-11-06T06:29:23Z) - A Comparative Study of Population-Graph Construction Methods and Graph
Neural Networks for Brain Age Regression [48.97251676778599]
In medical imaging, population graphs have demonstrated promising results, mostly for classification tasks.
extracting population graphs is a non-trivial task and can significantly impact the performance of Graph Neural Networks (GNNs)
In this work, we highlight the importance of a meaningful graph construction and experiment with different population-graph construction methods.
arXiv Detail & Related papers (2023-09-26T10:30:45Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
Current biological networks are noisy, sparse, and incomplete. Experimental identification of such interactions is both time-consuming and expensive.
Deep graph neural networks have shown their effectiveness in modeling graph-structured data and achieved good performance in biomedical interaction prediction.
Our proposed method enables the graph convolutional networks to dynamically adapt their depths to accommodate an increasing number of interactions.
arXiv Detail & Related papers (2022-11-22T20:44:28Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Disentangled Spatiotemporal Graph Generative Models [32.11916705039446]
graph data is becoming increasingly important, ranging from microscale (e.g. protein folding) to middle-scale (e.g. human mobility network)
arXiv Detail & Related papers (2022-02-28T08:36:50Z) - Brain Multigraph Prediction using Topology-Aware Adversarial Graph
Neural Network [1.6114012813668934]
We introduce topoGAN architecture, which jointly predicts multiple brain graphs from a single brain graph.
Our three key innovations are: (i) designing a novel graph adversarial auto-encoder for predicting multiple brain graphs from a single one, (ii) clustering the encoded source graphs in order to handle the mode collapse issue of GAN and (iii) introducing a topological loss to force the prediction of topologically sound target brain graphs.
arXiv Detail & Related papers (2021-05-06T10:20:45Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.