論文の概要: Large Language Models in Mental Health Care: a Scoping Review
- arxiv url: http://arxiv.org/abs/2401.02984v2
- Date: Wed, 21 Aug 2024 13:55:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-22 23:04:42.915797
- Title: Large Language Models in Mental Health Care: a Scoping Review
- Title(参考訳): メンタルヘルスにおける大規模言語モデル:スコーピング・レビュー
- Authors: Yining Hua, Fenglin Liu, Kailai Yang, Zehan Li, Hongbin Na, Yi-han Sheu, Peilin Zhou, Lauren V. Moran, Sophia Ananiadou, Andrew Beam, John Torous,
- Abstract要約: メンタルヘルスにおける大規模言語モデル(LLM)の統合は、新たな分野である。
アプリケーションの結果を体系的にレビューし、臨床設定の利点と限界を明確にすることが必要である。
本総説は、精神医療におけるLSMの使用について、その効果、課題、将来的な応用の可能性について、総合的に概観することを目的としている。
- 参考スコア(独自算出の注目度): 28.635427491110484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of large language models (LLMs) in mental health care is an emerging field. There is a need to systematically review the application outcomes and delineate the advantages and limitations in clinical settings. This review aims to provide a comprehensive overview of the use of LLMs in mental health care, assessing their efficacy, challenges, and potential for future applications. A systematic search was conducted across multiple databases including PubMed, Web of Science, Google Scholar, arXiv, medRxiv, and PsyArXiv in November 2023. All forms of original research, peer-reviewed or not, published or disseminated between October 1, 2019, and December 2, 2023, are included without language restrictions if they used LLMs developed after T5 and directly addressed research questions in mental health care settings. From an initial pool of 313 articles, 34 met the inclusion criteria based on their relevance to LLM application in mental health care and the robustness of reported outcomes. Diverse applications of LLMs in mental health care are identified, including diagnosis, therapy, patient engagement enhancement, etc. Key challenges include data availability and reliability, nuanced handling of mental states, and effective evaluation methods. Despite successes in accuracy and accessibility improvement, gaps in clinical applicability and ethical considerations were evident, pointing to the need for robust data, standardized evaluations, and interdisciplinary collaboration. LLMs hold substantial promise for enhancing mental health care. For their full potential to be realized, emphasis must be placed on developing robust datasets, development and evaluation frameworks, ethical guidelines, and interdisciplinary collaborations to address current limitations.
- Abstract(参考訳): メンタルヘルスにおける大規模言語モデル(LLM)の統合は、新たな分野である。
アプリケーションの結果を体系的にレビューし、臨床設定の利点と限界を明確にすることが必要である。
本総説は、精神医療におけるLSMの使用について、その効果、課題、将来的な応用の可能性について、総合的に概観することを目的としている。
2023年11月にPubMed、Web of Science、Google Scholar、arXiv、medRxiv、PsyArXivを含む複数のデータベースで体系的な検索が行われた。
2019年10月1日から2023年12月2日までに公表または配布された、ピアレビューの有無にかかわらず、オリジナルの研究は、T5以降に開発されたLSMを使用し、メンタルヘルス設定における直接的な研究課題に対処する場合、言語制限なしで含まれる。
最初の313項目から、34項目は、精神医療におけるLSM適用と、報告された結果の堅牢性に基づく包括的基準を満たした。
診断、治療、患者のエンゲージメント向上など、精神医療におけるLSMの多種多様な応用が同定される。
主な課題は、データの可用性と信頼性、精神状態の微妙な扱い、効果的な評価方法である。
精度とアクセシビリティの改善は成功したものの、臨床応用可能性と倫理的考察のギャップは明らかであり、堅牢なデータの必要性、標準化された評価、学際的な協調の必要性が指摘された。
LLMはメンタルヘルスの強化を約束している。
そのためには、堅牢なデータセット、開発および評価フレームワーク、倫理的ガイドライン、現在の制限に対処するための学際的コラボレーションの開発に重点を置く必要がある。
関連論文リスト
- Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
医学的文脈における大きな言語モデル(LLM)の信頼性と精度は依然として重要な懸念点である。
現在の評価手法はロバスト性に欠けることが多く、LLMの性能を総合的に評価することができない。
我々は,これらの課題に対処するために,医療用LCMの特別設計評価フレームワークであるMed-CoDEを提案する。
論文 参考訳(メタデータ) (2025-04-21T16:51:11Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
MedR-Benchは1,453例の構造化患者のベンチマークデータセットで、推論基準を付した注釈付きである。
本稿では,3つの批判的診察勧告,診断決定,治療計画を含む枠組みを提案し,患者のケアジャーニー全体をシミュレートする。
このベンチマークを用いて、DeepSeek-R1、OpenAI-o3-mini、Gemini-2.0-Flash Thinkingなど、最先端の5つのLCMを評価した。
論文 参考訳(メタデータ) (2025-03-06T18:35:39Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - PsychBench: A comprehensive and professional benchmark for evaluating the performance of LLM-assisted psychiatric clinical practice [20.166682569070073]
LLM(Large Language Models)は、医療資源の不足や精神科臨床における診断整合性の低下といった問題に対処するための潜在的な解決策を提供する。
精神科臨床現場における LLM の実用性を評価するためのベンチマークシステム PsychBench を提案する。
既存のモデルは大きな可能性を秘めているが,精神科臨床における意思決定ツールとしてはまだ不十分である。
論文 参考訳(メタデータ) (2025-02-28T12:17:41Z) - A Survey of Large Language Models in Psychotherapy: Current Landscape and Future Directions [13.17064228097947]
大規模言語モデル(LLM)は、精神疾患の評価、診断、治療を強化することにより、精神療法における有望な解決策を提供する。
本調査は、精神療法におけるLLM応用の現状を概観する。
本稿では,精神療法の過程を,評価,診断,治療の3つの要素に分類し,各領域における課題と進歩を検討するための新しい概念分類法を提案する。
論文 参考訳(メタデータ) (2025-02-16T12:18:40Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、多様な、アクセス可能な、スティグマのない、パーソナライズされた、リアルタイムのメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-17T22:04:32Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、アクセス可能で、スティグマフリーで、パーソナライズされ、リアルタイムなメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-06T17:11:29Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - Applying and Evaluating Large Language Models in Mental Health Care: A Scoping Review of Human-Assessed Generative Tasks [16.099253839889148]
大規模言語モデル(LLM)はメンタルヘルスのための有望なツールとして登場し、人間のような反応を生成する能力を通じてスケーラブルなサポートを提供する。
しかし, 臨床環境におけるこれらのモデルの有効性は明らかになっていない。
このスコーピングレビューは、これらのモデルが現実世界のシナリオで人間の参加者とテストされた研究に焦点を当てている。
論文 参考訳(メタデータ) (2024-08-21T02:21:59Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Large Language Model for Mental Health: A Systematic Review [2.9429776664692526]
大規模言語モデル(LLM)は、デジタルヘルスの潜在的な応用に対して大きな注目を集めている。
この体系的なレビューは、早期スクリーニング、デジタル介入、臨床応用におけるその強みと限界に焦点を当てている。
論文 参考訳(メタデータ) (2024-02-19T17:58:41Z) - Benefits and Harms of Large Language Models in Digital Mental Health [40.02859683420844]
大型言語モデル (LLMs) は、デジタルメンタルヘルスを未知の領域に導くことを約束している。
本稿では、デジタルメンタルヘルスツールの設計、開発、実装においてLLMがもたらす可能性とリスクについて、現代の展望を示す。
論文 参考訳(メタデータ) (2023-11-07T14:11:10Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。