Low-Rank Adaptation of Pre-Trained Stable Diffusion for Rigid-Body Target ISAR Imaging
- URL: http://arxiv.org/abs/2503.21823v1
- Date: Wed, 26 Mar 2025 07:04:25 GMT
- Title: Low-Rank Adaptation of Pre-Trained Stable Diffusion for Rigid-Body Target ISAR Imaging
- Authors: Boan Zhang, Hang Dong, Jiongge Zhang, Long Tian, Rongrong Wang, Zhenhua Wu, Xiyang Liu, Hongwei Liu,
- Abstract summary: We propose a novel inverse synthetic aperture radar (ISAR) imaging method for rigid-body targets.<n>Our approach adopts the basic structure and pre-trained parameters of SD Turbo.<n>We integrate LoRA-SD into the RID-based ISAR imaging, enabling sharply focused and denoised imaging with super-resolution capabilities.
- Score: 15.523386842406344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional range-instantaneous Doppler (RID) methods for rigid-body target imaging often suffer from low resolution due to the limitations of time-frequency analysis (TFA). To address this challenge, our primary focus is on obtaining high resolution time-frequency representations (TFRs) from their low resolution counterparts. Recognizing that the curve features of TFRs are a specific type of texture feature, we argue that pre trained generative models such as Stable Diffusion (SD) are well suited for enhancing TFRs, thanks to their powerful capability in capturing texture representations. Building on this insight, we propose a novel inverse synthetic aperture radar (ISAR) imaging method for rigid-body targets, leveraging the low-rank adaptation (LoRA) of a pre-trained SD model. Our approach adopts the basic structure and pre-trained parameters of SD Turbo while incorporating additional linear operations for LoRA and adversarial training to achieve super-resolution and noise suppression. Then we integrate LoRA-SD into the RID-based ISAR imaging, enabling sharply focused and denoised imaging with super-resolution capabilities. We evaluate our method using both simulated and real radar data. The experimental results demonstrate the superiority of our approach in frequency es timation and ISAR imaging compared to traditional methods. Notably, the generalization capability is verified by training on simulated radar data and testing on measured radar data.
Related papers
- C-DiffSET: Leveraging Latent Diffusion for SAR-to-EO Image Translation with Confidence-Guided Reliable Object Generation [23.63992950769041]
C-DiffSET is a framework leveraging pretrained Latent Diffusion Model (LDM) extensively trained on natural images.
Remarkably, we find that the pretrained VAE encoder aligns SAR and EO images in the same latent space, even with varying noise levels in SAR inputs.
arXiv Detail & Related papers (2024-11-16T12:28:40Z) - FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation [5.578820789388206]
This paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM)
We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR)
arXiv Detail & Related papers (2024-08-15T05:43:46Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Accelerating Diffusion for SAR-to-Optical Image Translation via Adversarial Consistency Distillation [5.234109158596138]
We propose a new training framework for SAR-to-optical image translation.
Our method employs consistency distillation to reduce iterative inference steps and integrates adversarial learning to ensure image clarity and minimize color shifts.
The results demonstrate that our approach significantly improves inference speed by 131 times while maintaining the visual quality of the generated images.
arXiv Detail & Related papers (2024-07-08T16:36:12Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - SAR Despeckling via Regional Denoising Diffusion Probabilistic Model [6.154796320245652]
Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
This paper introduces a novel despeckling approach termed Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models.
arXiv Detail & Related papers (2024-01-06T04:34:46Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
We propose a new perception consistency ultrasound image super-resolution (SR) method based on self-supervision and cycle generative adversarial network (CycleGAN)
We first generate the HR fathers and the LR sons of the test ultrasound LR image through image enhancement.
We then make full use of the cycle loss of LR-SR-LR and HR-LR-SR and the adversarial characteristics of the discriminator to promote the generator to produce better perceptually consistent SR results.
arXiv Detail & Related papers (2020-12-28T08:24:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.