A Physics-guided Generative AI Toolkit for Geophysical Monitoring
- URL: http://arxiv.org/abs/2401.03131v1
- Date: Sat, 6 Jan 2024 06:09:05 GMT
- Title: A Physics-guided Generative AI Toolkit for Geophysical Monitoring
- Authors: Junhuan Yang, Hanchen Wang, Yi Sheng, Youzuo Lin, Lei Yang
- Abstract summary: Full-waveform inversion (FWI) plays a vital role in geoscience to explore the subsurface.
We introduce the EdGeo toolkit, which employs a diffusion-based model guided by physics principles to generate high-fidelity velocity maps.
- Score: 13.986582633154226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-waveform inversion (FWI) plays a vital role in geoscience to explore the
subsurface. It utilizes the seismic wave to image the subsurface velocity map.
As the machine learning (ML) technique evolves, the data-driven approaches
using ML for FWI tasks have emerged, offering enhanced accuracy and reduced
computational cost compared to traditional physics-based methods. However, a
common challenge in geoscience, the unprivileged data, severely limits ML
effectiveness. The issue becomes even worse during model pruning, a step
essential in geoscience due to environmental complexities. To tackle this, we
introduce the EdGeo toolkit, which employs a diffusion-based model guided by
physics principles to generate high-fidelity velocity maps. The toolkit uses
the acoustic wave equation to generate corresponding seismic waveform data,
facilitating the fine-tuning of pruned ML models. Our results demonstrate
significant improvements in SSIM scores and reduction in both MAE and MSE
across various pruning ratios. Notably, the ML model fine-tuned using data
generated by EdGeo yields superior quality of velocity maps, especially in
representing unprivileged features, outperforming other existing methods.
Related papers
- Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
We investigate how an often overlooked processing step affects the quality of an emulator's predictions.
We implement ML architectures from a class of methods called reservoir computing: (1) a form of spatial Vector Autoregression (N VAR), and (2) an Echo State Network (ESN)
In all cases, subsampling the training data consistently leads to an increased bias at small scales that resembles numerical diffusion.
arXiv Detail & Related papers (2023-04-28T21:34:53Z) - Evaluation Challenges for Geospatial ML [5.576083740549639]
Geospatial machine learning models and maps are increasingly used for downstream analyses in science and policy.
The correct way to measure performance of spatial machine learning outputs has been a topic of debate.
This paper delineates unique challenges of model evaluation for geospatial machine learning with global or remotely sensed datasets.
arXiv Detail & Related papers (2023-03-31T14:24:06Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
Recent Machine Learning (ML) models have shown new promises in capturing important dynamics in high-resolution signals.
This study shows that significant information is often lost in the low-resolution down-sampled features.
We propose a new approach, which combines the strengths of advanced time-series sequence modeling and state-of-the-art neural PDE solvers.
arXiv Detail & Related papers (2023-02-16T06:13:01Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Deep Surrogate for Direct Time Fluid Dynamics [44.62475518267084]
Graph Neural Networks (GNN) can address the specificity of the irregular meshes commonly used in CFD simulations.
We present our ongoing work to design a novel direct time GNN architecture for irregular meshes.
arXiv Detail & Related papers (2021-12-16T10:08:20Z) - Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and
Partial Differential Equation in a Loop [13.1144828613672]
Full-Waveform Inversion (FWI) has been widely used in geophysics to estimate subsurface velocity maps from seismic data.
We introduce a new large-scale dataset OpenFWI, to establish a more challenging benchmark for the community.
Experiment results show that our model (using seismic data alone) yields comparable accuracy to the supervised counterpart.
arXiv Detail & Related papers (2021-10-14T17:47:22Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Physics-Consistent Data-driven Waveform Inversion with Adaptive Data
Augmentation [12.564534712461331]
We develop a new hybrid computational approach to solve full-waveform inversion (FWI)
We develop a data augmentation strategy that can improve the representativity of the training set.
We apply our method to synthetic elastic seismic waveform data generated from a subsurface geologic model built on a carbon sequestration site at Kimberlina, California.
arXiv Detail & Related papers (2020-09-03T17:12:55Z) - From calibration to parameter learning: Harnessing the scaling effects
of big data in geoscientific modeling [2.9897531698031403]
We propose a differentiable parameter learning framework that efficiently learns a global mapping between inputs and parameters.
As training data increases, dPL achieves better performance, more physical coherence, and better generalizability.
We demonstrate examples that learned from soil moisture and streamflow, where dPL drastically outperformed existing evolutionary and regionalization methods.
arXiv Detail & Related papers (2020-07-30T21:38:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.