論文の概要: Why Solving Multi-agent Path Finding with Large Language Model has not
Succeeded Yet
- arxiv url: http://arxiv.org/abs/2401.03630v2
- Date: Fri, 9 Feb 2024 17:48:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 19:56:29.129753
- Title: Why Solving Multi-agent Path Finding with Large Language Model has not
Succeeded Yet
- Title(参考訳): 大規模言語モデルによるマルチエージェントパス探索が成功していない理由
- Authors: Weizhe Chen, Sven Koenig, Bistra Dilkina
- Abstract要約: 我々はマルチエージェント経路探索(MAPF)の問題に焦点をあて、マルチロボット経路計画(multi-robot route planning)とも呼ばれる。
障害物のない空の部屋マップ上でのモチベーションの成功を示すとともに、標準MAPFベンチマークのより難しい部屋マップと迷路マップの計画に失敗することを示す。
- 参考スコア(独自算出の注目度): 31.253063077167617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the explosive influence caused by the success of large language models
(LLM) like ChatGPT and GPT-4, there has been an extensive amount of recent work
showing that foundation models can be used to solve a large variety of tasks.
However, there is very limited work that shares insights on multi-agent
planning. Multi-agent planning is different from other domains by combining the
difficulty of multi-agent coordination and planning, and making it hard to
leverage external tools to facilitate the reasoning needed. In this paper, we
focus on the problem of multi-agent path finding (MAPF), which is also known as
multi-robot route planning, and study the performance of solving MAPF with
LLMs. We first show the motivating success on an empty room map without
obstacles, then the failure to plan on the harder room map and maze map of the
standard MAPF benchmark. We present our position on why directly solving MAPF
with LLMs has not been successful yet, and we use various experiments to
support our hypothesis. Based on our results, we discussed how researchers with
different backgrounds could help with this problem from different perspectives.
- Abstract(参考訳): ChatGPTやGPT-4のような大規模言語モデル(LLM)の成功によって引き起こされた爆発的な影響により、近年、基礎モデルが様々なタスクを解くために利用できることを示す研究が数多く行われている。
しかし、マルチエージェント計画に関する洞察を共有する作業は非常に限られている。
マルチエージェント計画は他のドメインと異なり、マルチエージェント調整と計画の難しさを組み合わせ、必要な推論を容易にするために外部ツールを活用することが困難になる。
本稿では,マルチロボット経路計画(Multi-robot route planning)として知られるMAPF問題に着目し,LLMを用いたMAPFの解法の性能について検討する。
まず、障害のない空の部屋マップ上で、モチベーションのある成功を示す。次に、標準MAPFベンチマークのより難しい部屋マップと迷路マップの計画に失敗する。
LLMによるMAPFの直接解法がまだ成功していない理由を述べるとともに,仮説を支持するために様々な実験を行った。
この結果に基づき,異なる背景を持つ研究者が,異なる視点からこの問題にどのように役立つのかを考察した。
関連論文リスト
- MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale [46.35418789518417]
マルチエージェントパスフィンディング(Multi-agent pathfinding)は、共有環境における複数のエージェントの衝突のないパスを見つけることを必要とする、難しい計算問題である。
我々はMAPF-GPTと呼ばれるMAPF問題の基盤モデルを構築した。
擬似学習を用いて、部分観測可能性の条件下での行動を生成するための準最適専門家軌道のセットに関する政策を訓練した。
MAPF-GPTは、様々な問題インスタンスにおいて、現在最も優れた学習可能なMAPF解法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-08-29T12:55:10Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
未知環境における質問応答におけるマルチエンボディードLEMエクスプローラ(MELE)の利用について検討する。
複数のLSMベースのエージェントが独立して家庭用環境に関する質問を探索し、回答する。
各問合せに対して1つの最終回答を生成するために,異なるアグリゲーション手法を解析する。
論文 参考訳(メタデータ) (2024-06-16T12:46:40Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - CoMM: Collaborative Multi-Agent, Multi-Reasoning-Path Prompting for Complex Problem Solving [9.446546965008249]
協調型マルチエージェント・マルチレゾニングパス(CoMM)プロンプトフレームワークを提案する。
具体的には、LLMが問題解決チームで異なる役割を演じるように促し、異なるロールプレイエージェントが目的のタスクを協調的に解決するように促します。
2つの大学レベルの科学問題に対する提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-04-26T23:29:12Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
マルチエージェントパスフィンディング問題は、グラフに閉じ込められたエージェントのグループに対するコンフリクトフリーパスのセットを見つけることである。
本研究では、エージェントが他のエージェントをローカルにのみ観察できる分散MAPF設定に焦点を当てた。
MAPFタスクのための分散マルチエージェントモンテカルロ木探索法を提案する。
論文 参考訳(メタデータ) (2023-12-26T06:57:22Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - Subdimensional Expansion Using Attention-Based Learning For Multi-Agent
Path Finding [9.2127262112464]
MAPF(Multi-Agent Path Finding)は、各開始点から目標地点までの複数のエージェントに対する競合のないパスを見つける。
我々は、この学習に基づくシングルエージェントプランナーをM*に統合することにより、LM*と呼ばれる新しいマルチエージェントプランナーを開発する。
以上の結果から,M* と比較した場合,LM* はコンフリクトが少なく,高速に動作し,高い成功率を享受できることがわかった。
論文 参考訳(メタデータ) (2021-09-29T20:01:04Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
このトピックの過去の発展と現在の傾向から学んだ教訓を示し、その広範な影響について議論します。
最適MAPF解決のための2つの主要なアプローチは、(1)MAPFを直接解決する専用の検索ベース手法、(2)MAPFインスタンスを異なる確立された形式でインスタンスに還元するコンパイルベース手法である。
論文 参考訳(メタデータ) (2021-04-23T20:13:12Z) - Explanation Generation for Multi-Modal Multi-Agent Path Finding with
Optimal Resource Utilization using Answer Set Programming [1.7132914341329848]
mMAPFの実際の応用には柔軟性と説明性が必要である。
本稿では,ソリューションの実現可能性と最適性に関する質問に対する説明を生成する手法を提案する。
論文 参考訳(メタデータ) (2020-08-08T18:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。