論文の概要: Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
- arxiv url: http://arxiv.org/abs/2401.03955v5
- Date: Tue, 9 Apr 2024 07:19:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 11:34:21.487170
- Title: Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
- Title(参考訳): Tiny Time Mixers (TTMs):多変量時系列のZero/Few-Shot予測のための高速事前学習モデル
- Authors: Vijay Ekambaram, Arindam Jati, Nam H. Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M. Gifford, Jayant Kalagnanam,
- Abstract要約: 本稿では,軽量なTSMixerアーキテクチャに基づく,非常に小さなモデルであるTiny Time Mixers(TTM)を紹介する。
TTMは、パブリックTSデータセットにのみトレーニングされた、高速で小さな一般トレーニング済みのモデルを開発する最初の成功である。
これは、少数/ゼロショットの予測において、人気のあるベンチマークよりもかなりの精度(12~38%)向上を示している。
- 参考スコア(独自算出の注目度): 11.136300104263599
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large pre-trained models for zero/few-shot learning excel in language and vision domains but encounter challenges in multivariate time series (TS) due to the diverse nature and scarcity of publicly available pre-training data. Consequently, there has been a recent surge in utilizing pre-trained large language models (LLMs) with token adaptations for TS forecasting. These approaches employ cross-domain transfer learning and surprisingly yield impressive results. However, these models are typically very slow and large (~billion parameters) and do not consider cross-channel correlations. To address this, we present Tiny Time Mixers (TTM), a significantly small model based on the lightweight TSMixer architecture. TTM marks the first success in developing fast and tiny general pre-trained models (<1M parameters), exclusively trained on public TS datasets, with effective transfer learning capabilities for forecasting. To tackle the complexity of pre-training on multiple datasets with varied temporal resolutions, we introduce several novel enhancements such as adaptive patching, dataset augmentation via downsampling, and resolution prefix tuning. Moreover, we employ a multi-level modeling strategy to effectively model channel correlations and infuse exogenous signals during fine-tuning, a crucial capability lacking in existing benchmarks. TTM shows significant accuracy gains (12-38\%) over popular benchmarks in few/zero-shot forecasting. It also drastically reduces the compute needs as compared to LLM-TS methods, with a 14X cut in learnable parameters, 106X less total parameters, and substantial reductions in fine-tuning (65X) and inference time (54X). In fact, TTM's zero-shot often surpasses the few-shot results in many popular benchmarks, highlighting the efficacy of our approach. Models and source code are available at https://huggingface.co/ibm/TTM
- Abstract(参考訳): ゼロ/フェーショット学習のための大規模な事前学習モデルは、言語や視覚領域において優れているが、多変量時系列(TS)において、公開されている事前学習データの多様性と不足により、課題に直面している。
その結果、TS予測のためのトークン適応による事前訓練済みの大規模言語モデル(LLM)の利用が近年急増している。
これらのアプローチはクロスドメイン転送学習を採用しており、驚くべき結果をもたらす。
しかしながら、これらのモデルは典型的には非常に遅く、大きい(−ビリオンパラメータ)ため、チャネル間の相関を考慮しない。
これを解決するために,軽量なTSMixerアーキテクチャに基づく,はるかに小さなモデルであるTiny Time Mixers (TTM)を提案する。
TTMは、パブリックTSデータセットにのみトレーニングされた高速で小さな一般トレーニング済みモデル(<1Mパラメータ)を開発し、予測に効果的な転送学習機能を備えた最初の成功である。
時間分解能の異なる複数のデータセットに対する事前トレーニングの複雑さに対処するために、適応パッチ、ダウンサンプリングによるデータセット拡張、解像度プレフィックスチューニングなど、いくつかの新しい拡張を導入する。
さらに,チャネル相関を効果的にモデル化し,既存のベンチマークに欠落する重要な機能である微調整時に外因性シグナルを注入するためのマルチレベルモデリング手法を用いる。
TTMは、少数/ゼロショットの予測において、人気のあるベンチマークよりも大幅に精度が向上している(12-38\%)。
また、LLM-TS法と比較して、学習可能なパラメータが14倍、総パラメータが106倍、微調整(65倍)と推論時間(54倍)が大幅に削減された。
実際、TTMのゼロショットは、多くの人気のあるベンチマークにおいて、数ショットの結果を上回ることが多く、我々のアプローチの有効性を強調している。
モデルとソースコードはhttps://huggingface.co/ibm/TTMで入手できる。
関連論文リスト
- FM-TS: Flow Matching for Time Series Generation [71.31148785577085]
本稿では、時系列生成のための修正フローマッチングベースのフレームワークFM-TSを紹介する。
FM-TSは、トレーニングと推論の点でより効率的である。
我々は、太陽予測とMuJoCo計算タスクにおいて優れた性能を達成した。
論文 参考訳(メタデータ) (2024-11-12T03:03:23Z) - A Mamba Foundation Model for Time Series Forecasting [13.593170999506889]
本稿では,マンバアーキテクチャ上に構築された時系列予測のための線形複雑基盤モデルであるTSMambaを紹介する。
このモデルは、前方および後方のMambaエンコーダを通して時間的依存関係をキャプチャし、高い予測精度を達成する。
また、タスク固有の予測モデルと比較して、競争力や優れたフルショットパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-11-05T09:34:05Z) - Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts [25.503695417712997]
Time-MoEは、より大きく、より有能な基礎モデルを予測するために設計された、スケーラブルで統一されたアーキテクチャである。
Time-MoEは、予測毎にネットワークのサブセットだけを活性化することで、計算効率を向上させる。
時系列基礎モデルを24億のパラメータに拡張し,予測精度を大幅に向上させた。
論文 参考訳(メタデータ) (2024-09-24T12:42:18Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - UniTS: A Unified Multi-Task Time Series Model [31.675845788410246]
UniTSは、予測タスクと生成タスクを単一のフレームワークに統合した、統合されたマルチタスク時系列モデルである。
UniTSは、人間の活動センサー、ヘルスケア、エンジニアリング、ファイナンスにまたがる38のデータセットでテストされている。
論文 参考訳(メタデータ) (2024-02-29T21:25:58Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Efficient GPT Model Pre-training using Tensor Train Matrix
Representation [65.96485282393361]
大規模なトランスフォーマーモデルは数十億のパラメータを特徴としており、デプロイが困難になり、スクラッチからトレーニングコストが禁じられている。
GPT-2アーキテクチャのパラメータ数を削減すべく、完全に接続された層の行列を対応するTrain Matrix(TTM)構造に置き換える。
GPTベースのモデルは最大40%のパラメータを格納し、元のモデルに匹敵するパープレキシティを示す。
論文 参考訳(メタデータ) (2023-06-05T08:38:25Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Neural forecasting at scale [8.245069318446415]
本研究では,大規模な時系列集合上での時系列予測のために,アンサンブルに基づくディープニューラルネットワークを効率的にスケーリングする問題について検討する。
我々のモデルは、関連するモデルの実用的限界に対処し、トレーニング時間を半減し、メモリ要件を5。
論文 参考訳(メタデータ) (2021-09-20T17:22:40Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。