Generative adversarial wavelet neural operator: Application to fault
detection and isolation of multivariate time series data
- URL: http://arxiv.org/abs/2401.04004v1
- Date: Mon, 8 Jan 2024 16:36:47 GMT
- Title: Generative adversarial wavelet neural operator: Application to fault
detection and isolation of multivariate time series data
- Authors: Jyoti Rani and Tapas Tripura and Hariprasad Kodamana and Souvik
Chakraborty
- Abstract summary: This article proposes a generative adversarial wavelet neural operator (GAWNO) as a novel unsupervised deep learning approach for fault detection and isolation.
In the first stage, the GAWNO is trained on a dataset of normal operating conditions to learn the underlying data distribution.
In the second stage, a reconstruction error-based threshold approach is employed to detect and isolate faults based on the discrepancy values.
- Score: 3.265784083548797
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fault detection and isolation in complex systems are critical to ensure
reliable and efficient operation. However, traditional fault detection methods
often struggle with issues such as nonlinearity and multivariate
characteristics of the time series variables. This article proposes a
generative adversarial wavelet neural operator (GAWNO) as a novel unsupervised
deep learning approach for fault detection and isolation of multivariate time
series processes.The GAWNO combines the strengths of wavelet neural operators
and generative adversarial networks (GANs) to effectively capture both the
temporal distributions and the spatial dependencies among different variables
of an underlying system. The approach of fault detection and isolation using
GAWNO consists of two main stages. In the first stage, the GAWNO is trained on
a dataset of normal operating conditions to learn the underlying data
distribution. In the second stage, a reconstruction error-based threshold
approach using the trained GAWNO is employed to detect and isolate faults based
on the discrepancy values. We validate the proposed approach using the
Tennessee Eastman Process (TEP) dataset and Avedore wastewater treatment plant
(WWTP) and N2O emissions named as WWTPN2O datasets. Overall, we showcase that
the idea of harnessing the power of wavelet analysis, neural operators, and
generative models in a single framework to detect and isolate faults has shown
promising results compared to various well-established baselines in the
literature.
Related papers
- Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
We propose a novel semi-supervised anomaly detection framework based on a heterogeneous feature network (HFN) for MTS.
We first combine the embedding similarity subgraph generated by sensor embedding and feature value similarity subgraph generated by sensor values to construct a time-series heterogeneous graph.
This approach fuses the state-of-the-art technologies of heterogeneous graph structure learning (HGSL) and representation learning.
arXiv Detail & Related papers (2022-11-01T05:01:34Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
We have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN.
It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor.
arXiv Detail & Related papers (2022-10-05T04:32:12Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.