Cooper quartets in interacting hybrid superconducting systems
- URL: http://arxiv.org/abs/2401.04202v2
- Date: Sat, 05 Oct 2024 08:49:12 GMT
- Title: Cooper quartets in interacting hybrid superconducting systems
- Authors: Luca Chirolli, Alessandro Braggio, Francesco Giazotto,
- Abstract summary: Cooper quartets represent exotic fermion aggregates describing strongly correlated matter.
We show how to design Cooper quartets in a double-dot system coupled to ordinary superconducting leads.
- Score: 44.99833362998488
- License:
- Abstract: Cooper quartets represent exotic fermion aggregates describing correlated matter at the basis of charge-$4e$ superconductivity and offer a platform for studying four-body interactions, of interest for topologically protected quantum computing, nuclear matter simulations, and more general strongly correlated matter. Focusing on solid-state systems, we show how to quantum design Cooper quartets in a double-dot system coupled to ordinary superconducting leads through the introduction of an attractive interdot interaction. A fundamentally novel, maximally correlated double-dot ground state, in the form of a superposition of vacuum $|0\rangle$ and four-electron state $|4e\rangle$, emerges as a narrow resonance in a many-body quartet correlator that is accompanied by negligible pair correlations and features a rich phenomenology. The system represents an instance of correlated Andreev matter and the results open the way to the exploration of interaction effects in hybrid superconducting devices, and the study of novel correlated states of matter with ingredients available in a quantum solid-state laboratory.
Related papers
- $n$-body anti-bunching in a degenerate Fermi gas of $^3$He* atoms [4.3075190561751]
We use the unique single-atom detection properties of $3$He* atoms to perform simultaneous measurements of the $n$-body quantum correlations.
Our results pave the way for using correlation functions to probe some of the rich physics associated with fermionic systems.
arXiv Detail & Related papers (2023-12-05T23:41:00Z) - Population Oscillations and Ubiquitous Coherences in multilevel quantum
systems driven by incoherent radiation [0.0]
We show that noise-induced coherences will be generated in all systems with four or more energy eigenstates.
Our findings facilitate the experimental detection of noise-induced coherent dynamics in complex quantum systems.
arXiv Detail & Related papers (2023-09-29T10:42:12Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Pairwise quantum correlations in four-level quantum dot systems [0.0]
We assume quantum dots can be assimilated to Fermi Hubbard sites when the Coulomb interaction between electrons is higher compared to their tunneling.
The study of pairwise entanglement in a small size array of quantum dots allows to model each pair as a quadrit-quadrit system.
arXiv Detail & Related papers (2022-03-02T13:02:54Z) - Cooper quartet correlations in infinite symmetric nuclear matter [0.3441021278275805]
We investigate the quartet correlations in four-component fermionic systems at the thermodynamic limit within a variational many-body theory.
Special attention is paid to the application of the present framework to an alpha-particle condensation in symmetric nuclear matter.
arXiv Detail & Related papers (2021-12-10T06:07:14Z) - Synthesizing five-body interaction in a superconducting quantum circuit [12.594562121892576]
We synthesize five-body spin-exchange interaction in a superconducting quantum circuit.
A Greenberger-Horne-Zeilinger state is generated in a single step with fidelity estimated to be $0.685$.
This study paves a way for quantum simulation involving many-body interactions and high excited states of quantum circuits.
arXiv Detail & Related papers (2021-09-01T11:29:12Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.