Pairwise quantum correlations in four-level quantum dot systems
- URL: http://arxiv.org/abs/2203.01078v1
- Date: Wed, 2 Mar 2022 13:02:54 GMT
- Title: Pairwise quantum correlations in four-level quantum dot systems
- Authors: Sanaa Abaach, Mustapha Faqir, Morad El Baz
- Abstract summary: We assume quantum dots can be assimilated to Fermi Hubbard sites when the Coulomb interaction between electrons is higher compared to their tunneling.
The study of pairwise entanglement in a small size array of quantum dots allows to model each pair as a quadrit-quadrit system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we assume quantum dots can be assimilated to Fermi Hubbard
sites when the Coulomb interaction between electrons is higher compared to
their tunneling. The study of pairwise entanglement in a small size array of
quantum dots allows to model each pair as a quadrit-quadrit system (4 $\times$
4 mixed state) instead of the more common and simplistic approach of describing
it in quantum information as a qubit-qubit system. We study the effect of
Coulomb interaction and temperature on pairwise entanglement as well as on
quantum coherence and total correlations. The crucial results of this study are
that entanglement resists better the increase in temperature when the Coulomb
interaction is stronger. Moreover, we successfully explain the behavior of
these correlations in terms of the energy spectrum, namely the ground state
degeneracy and the state energy difference.
Related papers
- Technical Review of Four Different Quantum Systems: Comparative Analysis of Quantum Correlation, Signal-to-Noise Ratio, and Fidelity [0.0]
We consider the electro-opto-mechanical, optoelectronics, 4-coupled qubits, and InP HEMT coupled with two external oscillator methods.
Since these systems are open quantum systems, they interact with their own environment medium and thermal bath.
We calculate the quantum correlation between cavity modes, signal-to-noise ratio, and fidelity for each system to evaluate their performance.
arXiv Detail & Related papers (2023-05-02T06:50:06Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Embedded Quantum Correlations in thermalized quantum Rabi systems [0.0]
We study how the quantum correlation depends on the coupling strength, number of qubits, and reservoir temperatures.
This work could help design more sophisticated quantum heat engines that rely on many-body systems with embedded correlations as working substances.
arXiv Detail & Related papers (2023-02-14T14:29:05Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Thermal entanglement and quantum coherence of a single electron in a
double quantum dot with Rashba Interaction [0.0]
We study the thermal quantum coherence in a semiconductor double quantum dot.
The main goal of this work is to provide a good understanding of the effects of temperature and several parameters in quantum coherence.
arXiv Detail & Related papers (2022-03-12T01:14:26Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Spin-Dependent Transport Through a Colloidal Quantum Dot: The Role of
Exchange Interactions [0.0]
We combine atomistic electronic structure calculations with quantum master equation methods to study the transport of electrons and holes through strongly confined quantum dots.
We find that a competition between the energy spacing between the two lowest quasiparticle energy levels determines the spin states of the lowest two quasiparticle energy levels.
The low density of electron states results in a spin singlet being the lowest energy two-electron state whereas, in contrast, the high density of states and significant exchange interaction results in a spin triplet being the lowest energy two-hole state.
arXiv Detail & Related papers (2021-02-15T19:00:00Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Thermal entanglement and correlated coherence in two coupled double
quantum dots systems [0.0]
In this work, we investigate the thermal quantum correlations in two coupled double semiconductor charge qubits.
We study, in detail, the effects of the tunneling parameters, the Coulomb interaction and the temperature on the thermal entanglement and on the correlated coherence.
arXiv Detail & Related papers (2020-07-11T22:10:38Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.