論文の概要: Air Quality Forecasting Using Machine Learning: A Global perspective
with Relevance to Low-Resource Settings
- arxiv url: http://arxiv.org/abs/2401.04369v1
- Date: Tue, 9 Jan 2024 05:52:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-10 16:40:44.827535
- Title: Air Quality Forecasting Using Machine Learning: A Global perspective
with Relevance to Low-Resource Settings
- Title(参考訳): 機械学習による大気質予測:低リソース環境におけるグローバルな視点
- Authors: Mulomba Mukendi Christian, Hyebong Choi
- Abstract要約: 大気汚染は世界第4位の死因である。
本研究では,2ヶ月の空気質データを用いた高精度な空気質予測のための新しい機械学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air pollution stands as the fourth leading cause of death globally. While
extensive research has been conducted in this domain, most approaches rely on
large datasets when it comes to prediction. This limits their applicability in
low-resource settings though more vulnerable. This study addresses this gap by
proposing a novel machine learning approach for accurate air quality prediction
using two months of air quality data. By leveraging the World Weather
Repository, the meteorological, air pollutant, and Air Quality Index features
from 197 capital cities were considered to predict air quality for the next
day. The evaluation of several machine learning models demonstrates the
effectiveness of the Random Forest algorithm in generating reliable
predictions, particularly when applied to classification rather than
regression, approach which enhances the model's generalizability by 42%,
achieving a cross-validation score of 0.38 for regression and 0.89 for
classification. To instill confidence in the predictions, interpretable machine
learning was considered. Finally, a cost estimation comparing the
implementation of this solution in high-resource and low-resource settings is
presented including a tentative of technology licensing business model. This
research highlights the potential for resource-limited countries to
independently predict air quality while awaiting larger datasets to further
refine their predictions.
- Abstract(参考訳): 大気汚染は世界で4番目に大きな死因となっている。
この領域で広範な研究が行われているが、ほとんどのアプローチは予測に関して大きなデータセットに依存している。
これにより、低リソース設定での適用性は制限されるが、より脆弱である。
本研究では,2ヶ月の空気質データを用いた空気質予測のための新しい機械学習手法を提案する。
世界気象レポジトリを活用することで、197都市の気象、大気汚染物質、大気汚染指数の特徴を翌日の大気質を予測することが検討された。
いくつかの機械学習モデルの評価は、信頼性のある予測を生成するためのランダムフォレストアルゴリズムの有効性を示し、特に回帰よりも分類に適用した場合、モデルの一般化可能性を高めるアプローチが42%向上し、回帰は0.38、分類は0.89となった。
予測に自信を与えるため、解釈可能な機械学習が検討された。
最後に、技術ライセンスビジネスモデルの仮案を含む高リソースおよび低リソース設定におけるこのソリューションの実装を比較したコスト見積を行う。
この研究は、資源が限られている国々が独自に空気質を予測できる可能性を強調し、より大きなデータセットがさらなる予測を洗練するのを待っている。
関連論文リスト
- Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
我々は高解像度データへの共通依存から逸脱する新しい戦略を導入する。
本稿では,データ拡張と処理に対する新たなアプローチとして,変数の追加による従来のアプローチの改善について述べる。
その結果, 解像度が低いにもかかわらず, 提案手法は大気条件の予測にかなり精度が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-13T03:01:22Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Beyond Tides and Time: Machine Learning Triumph in Water Quality [0.0]
この研究は、データサイエンスの専門家とドメイン固有の知識を持たない人々の両方にとって、堅牢な予測パイプラインを確立することを目的としている。
我々の研究は、データサイエンスの専門家とドメイン固有の知識を持たない人々の両方にとって、堅牢な予測パイプラインを確立することを目的としています。
論文 参考訳(メタデータ) (2023-09-29T03:33:53Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Unleashing Realistic Air Quality Forecasting: Introducing the
Ready-to-Use PurpleAirSF Dataset [4.190243190157989]
本稿では,PurpleAirネットワークからの包括的かつ容易にアクセス可能なデータセットであるPurpleAirSFを紹介する。
本稿では、PurpleAirSFの構築に使用されるデータ収集および処理方法の詳細について述べる。
従来の予測モデルと現代の予測モデルの両方を用いて予備実験を行い、将来の大気質予測タスクのベンチマークを作成する。
論文 参考訳(メタデータ) (2023-06-24T12:10:16Z) - Forecast-Aware Model Driven LSTM [0.0]
粗悪な空気質は人間の健康に大きな影響を及ぼす可能性がある。
モデルバイアスを補正するために使われる伝統的な手法は、線形性や基礎となる分布について仮定する。
ディープラーニングは、極端な空気質のイベントが存在する場合に、空気質の予測を約束する。
論文 参考訳(メタデータ) (2023-03-23T00:03:07Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。