論文の概要: SOS-Match: Segmentation for Open-Set Robust Correspondence Search and Robot Localization in Unstructured Environments
- arxiv url: http://arxiv.org/abs/2401.04791v2
- Date: Fri, 15 Mar 2024 18:40:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 02:22:38.194985
- Title: SOS-Match: Segmentation for Open-Set Robust Correspondence Search and Robot Localization in Unstructured Environments
- Title(参考訳): SOS-Match:非構造環境におけるオープンセットロバスト対応探索とロボットの局所化のためのセグメンテーション
- Authors: Annika Thomas, Jouko Kinnari, Parker Lusk, Kota Kondo, Jonathan P. How,
- Abstract要約: SOS-Matchは、非構造化環境でオブジェクトを検出し、マッチングするための新しいフレームワークである。
フィンランド南部の沿岸海域で収集されたドローン飛行を含む,バトヴィクの季節データセット上でSOS-Matchを評価する。
- 参考スコア(独自算出の注目度): 23.735747841666317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SOS-Match, a novel framework for detecting and matching objects in unstructured environments. Our system consists of 1) a front-end mapping pipeline using a zero-shot segmentation model to extract object masks from images and track them across frames and 2) a frame alignment pipeline that uses the geometric consistency of object relationships to efficiently localize across a variety of conditions. We evaluate SOS-Match on the Batvik seasonal dataset which includes drone flights collected over a coastal plot of southern Finland during different seasons and lighting conditions. Results show that our approach is more robust to changes in lighting and appearance than classical image feature-based approaches or global descriptor methods, and it provides more viewpoint invariance than learning-based feature detection and description approaches. SOS-Match localizes within a reference map up to 46x faster than other feature-based approaches and has a map size less than 0.5% the size of the most compact other maps. SOS-Match is a promising new approach for landmark detection and correspondence search in unstructured environments that is robust to changes in lighting and appearance and is more computationally efficient than other approaches, suggesting that the geometric arrangement of segments is a valuable localization cue in unstructured environments. We release our datasets at https://acl.mit.edu/SOS-Match/.
- Abstract(参考訳): SOS-Matchは非構造化環境におけるオブジェクトの検出とマッチングのための新しいフレームワークである。
私たちのシステムは
1)ゼロショットセグメンテーションモデルを用いたフロントエンドマッピングパイプラインを用いて、画像からオブジェクトマスクを抽出し、フレーム間で追跡する。
2) 物体関係の幾何的整合性を利用したフレームアライメントパイプラインを, 様々な条件で効率的に局在させる。
SOS-Matchをバトヴィクの季節データセットで評価し、異なる季節と照明条件下で南フィンランド沿岸のプロット上空でドローンによる飛行を観測した。
その結果,従来の画像特徴量に基づく手法やグローバルな記述手法よりも照明や外観の変化に頑健であり,学習に基づく特徴検出や記述手法よりも視点差が大きいことがわかった。
SOS-Matchは、他の特徴ベースのアプローチよりも最大46倍高速な参照マップ内をローカライズし、最もコンパクトな他のマップの0.5%未満のサイズを持つ。
SOS-Matchは、照明や外観の変化に頑健で、他の手法よりも計算効率が高い非構造環境におけるランドマーク検出と対応探索のための有望な新しいアプローチであり、セグメントの幾何学的配置は非構造環境における貴重な局所化キューであることを示唆している。
データセットはhttps://acl.mit.edu/SOS-Match/で公開しています。
関連論文リスト
- GOReloc: Graph-based Object-Level Relocalization for Visual SLAM [17.608119427712236]
本稿では,ロボットシステムのオブジェクトレベル再ローカライズのための新しい手法を紹介する。
軽量なオブジェクトレベルマップにおいて、現在のフレーム内の物体検出と3Dオブジェクトとの密接な関連付けにより、カメラセンサのポーズを決定する。
論文 参考訳(メタデータ) (2024-08-15T03:54:33Z) - Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching [0.0]
局所構造を考慮したグラフラプラシアン固有写像に基づく新しい手法を提案する。
ラプラシアン固有写像の順序と符号のあいまいさに対処するために、結合ラプラシアンと呼ばれる新しい作用素を導入する。
これらの高次元空間間の類似性は、形状に一致するような局所的な意味のあるスコアを与えることを示す。
論文 参考訳(メタデータ) (2024-02-27T10:10:12Z) - Yes, we CANN: Constrained Approximate Nearest Neighbors for local
feature-based visual localization [2.915868985330569]
Constrained Approximate Nearest Neighbors (CANN) は、局所的特徴のみを用いて、幾何学と外観空間の両方にわたって k-アネレスト近傍の合同解である。
提案手法は,現在最先端のグローバルな特徴量検索と,局所的な特徴量集計手法を用いたアプローチの両方に優れる。
論文 参考訳(メタデータ) (2023-06-15T10:12:10Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
本稿では、CorrMatchと呼ばれる、単純だが実行可能な半教師付きセマンティックセマンティックセマンティックセマンティクス手法を提案する。
相関写像は、同一カテゴリのクラスタリングピクセルを容易に実現できるだけでなく、良好な形状情報も含んでいることを観察する。
我々は,高信頼画素を拡大し,さらに掘り出すために,画素の対の類似性をモデル化して画素伝搬を行う。
そして、相関地図から抽出した正確なクラス非依存マスクを用いて、領域伝搬を行い、擬似ラベルを強化する。
論文 参考訳(メタデータ) (2023-06-07T10:02:29Z) - Robust Change Detection Based on Neural Descriptor Fields [53.111397800478294]
我々は、部分的に重なり合う観測結果とノイズのある局所化結果に頑健なオブジェクトレベルのオンライン変化検出手法を開発した。
形状符号の類似性を利用して物体を連想させ, 局所的な物体近傍の空間配置を比較することにより, 観測重複や局所雑音に対する頑健性を示す。
論文 参考訳(メタデータ) (2022-08-01T17:45:36Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
セグメンテーションに基づくシーンテキスト検出手法はシーンテキスト検出分野において大きな注目を集めている。
本稿では,二項化処理をセグメンテーションネットワークに統合する分散二項化(DB)モジュールを提案する。
アダプティブ・スケール・フュージョン (ASF) モジュールは, 異なるスケールの特徴を適応的に融合させることにより, スケールのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-02-21T15:30:14Z) - Lightweight Salient Object Detection in Optical Remote Sensing Images
via Feature Correlation [93.80710126516405]
本稿では,これらの問題に対処する軽量ORSI-SODソリューションであるCorrNetを提案する。
それぞれのコンポーネントのパラメータと計算を減らし、CorrNetは4.09Mのパラメータしか持たず、21.09GのFLOPで実行している。
2つの公開データセットの実験結果から、私たちの軽量なCorrNetは、26の最先端メソッドと比較して、競争力やパフォーマンスがさらに向上することが示された。
論文 参考訳(メタデータ) (2022-01-20T08:28:01Z) - Object-Augmented RGB-D SLAM for Wide-Disparity Relocalisation [3.888848425698769]
本稿では、一貫したオブジェクトマップを構築し、地図内のオブジェクトのセントロイドに基づいて再局在を行うことができるオブジェクト拡張RGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2021-08-05T11:02:25Z) - Combined Depth Space based Architecture Search For Person
Re-identification [70.86236888223569]
個人再識別(ReID)のための軽量で適切なネットワークの設計を目指しています。
本研究では,CDNetと呼ばれる効率的なネットワークアーキテクチャの探索に基づく,複合深さ空間(Componed Depth Space, CDS)と呼ばれる新しい検索空間を提案する。
そこで我々はTop-k Sample Search戦略という低コストの検索戦略を提案し、検索空間をフル活用し、局所的な最適結果のトラップを避ける。
論文 参考訳(メタデータ) (2021-04-09T02:40:01Z) - Structure-Consistent Weakly Supervised Salient Object Detection with
Local Saliency Coherence [14.79639149658596]
本論文では,スクリブルアノテーションによる弱監督オブジェクト検出のための1ラウンドのエンドツーエンドトレーニング手法を提案する。
6つのベンチマークで最新のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2020-12-08T12:49:40Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。