論文の概要: Reverse Projection: Real-Time Local Space Texture Mapping
- arxiv url: http://arxiv.org/abs/2401.05593v1
- Date: Wed, 10 Jan 2024 23:54:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-13 02:01:56.145676
- Title: Reverse Projection: Real-Time Local Space Texture Mapping
- Title(参考訳): 逆射影:リアルタイム局所空間テクスチャマッピング
- Authors: Adrian Xuan Wei Lim, Lynnette Hui Xian Ng, Conor Griffin, Nicholas
Kyger, Faraz Baghernezhad
- Abstract要約: 本稿では,3次元物体のテクスチャに直接デカールを描画する新しいテクスチャマッピング手法であるReverse Projectionを提案する。
提案したパイプラインは、モデル絵画のスピードと汎用性を改善するためのステップであると考えています。
- 参考スコア(独自算出の注目度): 1.291618835675492
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Reverse Projection, a novel projective texture mapping technique
for painting a decal directly to the texture of a 3D object. Designed to be
used in games, this technique works in real-time. By using projection
techniques that are computed in local space textures and outward-looking, users
using low-end android devices to high-end gaming desktops are able to enjoy the
personalization of their assets. We believe our proposed pipeline is a step in
improving the speed and versatility of model painting.
- Abstract(参考訳): 本稿では,3次元物体のテクスチャに直接デカールを描画する新しいテクスチャマッピング手法であるReverse Projectionを提案する。
ゲームで使用されるように設計され、この技術はリアルタイムで動作する。
ローカルスペースのテクスチャや外向きに計算された投影技術を使用することで、ローエンドのandroidデバイスからハイエンドのゲーム用デスクトップへアクセスするユーザは、自分の資産のパーソナライズを享受することができる。
提案するパイプラインは,モデルペイントの速度と汎用性を改善するための一歩だと考えています。
関連論文リスト
- TEXGen: a Generative Diffusion Model for Mesh Textures [63.43159148394021]
我々は、UVテクスチャ空間自体における学習の根本的な問題に焦点を当てる。
本稿では,点クラウド上にアテンション層を持つUVマップ上の畳み込みをインターリーブするスケーラブルなネットワークアーキテクチャを提案する。
テキストプロンプトとシングルビュー画像によって導かれるUVテクスチャマップを生成する7億のパラメータ拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-11-22T05:22:11Z) - REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices [51.983541908241726]
本研究は,様々な場面にまたがる反射面に対して,リアルタイムな新規ビュー合成を実現するための課題に取り組む。
既存のリアルタイムレンダリング手法、特にメッシュに基づくレンダリングは、リッチなビュー依存の外観を持つモデリングサーフェスにおいて、サブパーパフォーマンスを持つことが多い。
色を拡散およびスペクトルに分解し、ニューラル環境マップに基づいて反射方向のスペクトル色をモデル化する。
論文 参考訳(メタデータ) (2024-03-25T07:07:50Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamerは画像誘導型テクスチャ合成法である。
少数の入力画像から任意のカテゴリでターゲットの3D形状に光沢のあるテクスチャを転送することができる。
論文 参考訳(メタデータ) (2024-01-17T18:55:49Z) - GeoScaler: Geometry and Rendering-Aware Downsampling of 3D Mesh Textures [0.06990493129893112]
高解像度テクスチャマップは、3Dメッシュで現実世界のオブジェクトを正確に表現するために必要である。
GeoScalerは幾何学的手がかりを取り入れつつ、3Dメッシュのテクスチャマップをダウンサンプリングする方法である。
また,GeoScalerが生成したテクスチャは,従来のダウンサンプリング手法に比べて,画質のよいレンダリング画像を提供することを示した。
論文 参考訳(メタデータ) (2023-11-28T07:55:25Z) - EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices [53.28220984270622]
モバイル端末に暗黙的テクスチャを付加したtextbfSurf$ace 再構成手法を提案する。
提案手法は,合成と実世界の両方のデータセット上で,高品質な外観と正確なメッシュを再構築することができる。
我々の方法は1つのGPUを使ってたった1~2時間でトレーニングでき、40FPS(Frames per second)以上のモバイルデバイス上で実行することができる。
論文 参考訳(メタデータ) (2023-11-16T11:30:56Z) - Real-Time Neural Rasterization for Large Scenes [39.198327570559684]
本研究では,大規模シーンのリアルタイムなノベルビュー合成のための新しい手法を提案する。
既存のニューラルネットワークレンダリング手法は現実的な結果を生成するが、主に小規模なシーンで機能する。
私たちの仕事は、大規模な現実世界のシーンのリアルタイムレンダリングを可能にする最初のものです。
論文 参考訳(メタデータ) (2023-11-09T18:59:10Z) - TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering [54.35405028643051]
スマートフォン1台でテクスチャ化されたメッシュを野生で取得するパイプラインを新たに提案する。
提案手法ではまず,RGBD支援構造を動きから導入し,フィルタした深度マップを作成できる。
我々は,高品質なメッシュを実現するニューラル暗黙表面再構成法を採用する。
論文 参考訳(メタデータ) (2023-03-27T10:07:52Z) - Development and Evaluation of a Learning-based Model for Real-time Haptic Texture Rendering [23.078251379039987]
触覚テクスチャレンダリングのための学習に基づく行動条件モデルを提案する。
提案手法は,最先端手法に匹敵する,あるいは高品質な高周波数テクスチャレンダリングを実現する。
論文 参考訳(メタデータ) (2022-12-27T01:06:26Z) - ARF: Artistic Radiance Fields [63.79314417413371]
本稿では,任意のスタイル画像の芸術的特徴を3Dシーンに転送する方法を提案する。
点雲やメッシュ上で3次元スタイリングを行う従来の手法は、幾何的再構成誤差に敏感である。
より頑健なラディアンス場表現の体系化を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:55:31Z) - Real Time Incremental Foveal Texture Mapping for Autonomous Vehicles [11.702817783491616]
生成された詳細なマップは、さまざまなビジョンと計画アルゴリズムの仮想テストベッドとして機能します。
また、さまざまなビジョンおよび計画アルゴリズムの背景マップとしても機能します。
論文 参考訳(メタデータ) (2021-01-16T07:41:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。