論文の概要: Exploring Self- and Cross-Triplet Correlations for Human-Object
Interaction Detection
- arxiv url: http://arxiv.org/abs/2401.05676v1
- Date: Thu, 11 Jan 2024 05:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-12 19:32:13.982344
- Title: Exploring Self- and Cross-Triplet Correlations for Human-Object
Interaction Detection
- Title(参考訳): 人間と物体の相互作用検出のための自己・クロストリプレット相関の探索
- Authors: Weibo Jiang, Weihong Ren, Jiandong Tian, Liangqiong Qu, Zhiyong Wang,
Honghai Liu
- Abstract要約: 本稿では,HOI検出のための自己相関とクロストリプレット相関について検討する。
具体的には、各三重項提案を、Human、Objectがノードを表し、Actionがエッジを示すグラフとみなす。
また、インスタンスレベル、セマンティックレベル、レイアウトレベルの関係を共同で検討することで、クロストリップの依存関係についても検討する。
- 参考スコア(独自算出の注目度): 38.86053346974547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-Object Interaction (HOI) detection plays a vital role in scene
understanding, which aims to predict the HOI triplet in the form of <human,
object, action>. Existing methods mainly extract multi-modal features (e.g.,
appearance, object semantics, human pose) and then fuse them together to
directly predict HOI triplets. However, most of these methods focus on seeking
for self-triplet aggregation, but ignore the potential cross-triplet
dependencies, resulting in ambiguity of action prediction. In this work, we
propose to explore Self- and Cross-Triplet Correlations (SCTC) for HOI
detection. Specifically, we regard each triplet proposal as a graph where
Human, Object represent nodes and Action indicates edge, to aggregate
self-triplet correlation. Also, we try to explore cross-triplet dependencies by
jointly considering instance-level, semantic-level, and layout-level relations.
Besides, we leverage the CLIP model to assist our SCTC obtain interaction-aware
feature by knowledge distillation, which provides useful action clues for HOI
detection. Extensive experiments on HICO-DET and V-COCO datasets verify the
effectiveness of our proposed SCTC.
- Abstract(参考訳): 人間と物体の相互作用(Human-Object Interaction, HOI)の検出はシーン理解において重要な役割を担っている。
既存の手法は主にマルチモーダルな特徴(外観、オブジェクトの意味論、人間のポーズなど)を抽出し、それらを融合してHOI三重項を直接予測する。
しかし,これらの手法の多くは自己ストリップアグリゲーションの探索に焦点が当てられているが,クロストリップの依存関係は無視されているため,行動予測の曖昧さが生じる。
本研究では,HOI検出のための自己・横断的相関(SCTC)を提案する。
具体的には、各トリプレット提案を、Human, Objectがノードを表し、Actionがエッジを示し、自己トリップ相関を集約するグラフとみなす。
また、インスタンスレベル、セマンティクスレベル、レイアウトレベルの関係を共同で考慮することで、トリップレット間の依存性を探求する。
また,CLIPモデルを利用して,知識蒸留による相互作用認識機能の実現を支援し,HOI検出に有用なアクションヒントを提供する。
HICO-DETとV-COCOデータセットの大規模な実験により,提案したSCTCの有効性が検証された。
関連論文リスト
- Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Weakly-Supervised HOI Detection from Interaction Labels Only and
Language/Vision-Language Priors [36.75629570208193]
人-物相互作用検出(Human-object Interaction, HOI)は、人-物対とその相互作用カテゴリを、与えられた自然な画像から抽出することを目的としている。
本稿では,画像レベルのインタラクションラベルのみを用いて,文献における最も弱い監視設定によるHOI検出に取り組む。
まず,非相互作用型人間とオブジェクトの提案を駆使して,バッグ内の正の対の質を高める手法を提案する。
第2に、大きな言語モデルを使用して、人間とオブジェクトのカテゴリ間の相互作用を問合せし、モデルを強調しないよう強制する。
論文 参考訳(メタデータ) (2023-03-09T19:08:02Z) - Knowledge Guided Bidirectional Attention Network for Human-Object
Interaction Detection [3.0915392100355192]
HOIにおけるボトムアップ構文解析戦略の独立的利用は直感に反し、注意の拡散につながる可能性があると論じる。
HOIに新たな知識誘導型トップダウンアテンションを導入し、関係解析を「ルックアンドサーチ」プロセスとしてモデル化することを提案する。
一つのエンコーダ-デコーダモデルでボトムアップとトップダウンの注意を統一することで、プロセスを実装します。
論文 参考訳(メタデータ) (2022-07-16T16:42:49Z) - Detecting Human-Object Interactions with Object-Guided Cross-Modal
Calibrated Semantics [6.678312249123534]
我々は,オブジェクト指向の統計モデルを用いて,エンドツーエンドのモデルを強化することを目指している。
本稿では,Verb Semantic Model (VSM) とセマンティックアグリゲーション(セマンティックアグリゲーション)を用いて,このオブジェクト誘導階層から利益を得る方法を提案する。
上記のモジュールの組み合わせは、オブジェクト指向クロスモーダルネットワーク(OCN)を構成する。
論文 参考訳(メタデータ) (2022-02-01T07:39:04Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
人-物間相互作用(HOI)検出の課題に対処する。
既存の方法は、人間と物体の対の相互作用を独立に認識するか、複雑な外観に基づく共同推論を行う。
本稿では,抽象的空間意味表現を活用して,各対象対を記述し,二重関係グラフを用いてシーンの文脈情報を集約する。
論文 参考訳(メタデータ) (2020-08-26T17:59:40Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
本研究では,人間と物体の相互作用を直接検出する新しい完全畳み込み手法を提案する。
我々のネットワークは相互作用点を予測し、その相互作用を直接ローカライズし、分類する。
V-COCOとHICO-DETの2つの人気のあるベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2020-03-31T08:42:06Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。