論文の概要: Knowledge Guided Bidirectional Attention Network for Human-Object
Interaction Detection
- arxiv url: http://arxiv.org/abs/2207.07979v1
- Date: Sat, 16 Jul 2022 16:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 16:39:43.850199
- Title: Knowledge Guided Bidirectional Attention Network for Human-Object
Interaction Detection
- Title(参考訳): 人間-物体相互作用検出のための知識誘導双方向注意ネットワーク
- Authors: Jingjia Huang and Baixiang Yang
- Abstract要約: HOIにおけるボトムアップ構文解析戦略の独立的利用は直感に反し、注意の拡散につながる可能性があると論じる。
HOIに新たな知識誘導型トップダウンアテンションを導入し、関係解析を「ルックアンドサーチ」プロセスとしてモデル化することを提案する。
一つのエンコーダ-デコーダモデルでボトムアップとトップダウンの注意を統一することで、プロセスを実装します。
- 参考スコア(独自算出の注目度): 3.0915392100355192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human Object Interaction (HOI) detection is a challenging task that requires
to distinguish the interaction between a human-object pair. Attention based
relation parsing is a popular and effective strategy utilized in HOI. However,
current methods execute relation parsing in a "bottom-up" manner. We argue that
the independent use of the bottom-up parsing strategy in HOI is
counter-intuitive and could lead to the diffusion of attention. Therefore, we
introduce a novel knowledge-guided top-down attention into HOI, and propose to
model the relation parsing as a "look and search" process: execute
scene-context modeling (i.e. look), and then, given the knowledge of the target
pair, search visual clues for the discrimination of the interaction between the
pair. We implement the process via unifying the bottom-up and top-down
attention in a single encoder-decoder based model. The experimental results
show that our model achieves competitive performance on the V-COCO and HICO-DET
datasets.
- Abstract(参考訳): ヒューマンオブジェクトインタラクション(HOI)検出は、人間とオブジェクトのペア間の相互作用を区別する必要がある課題である。
注意に基づく関係解析は,HOIで広く利用されている,効果的な戦略である。
しかし、現在のメソッドは"bottom-up"方法で関係解析を実行する。
HOIにおけるボトムアップ構文解析戦略の独立的利用は直感に反し、注意の拡散につながる可能性があると論じる。
そこで,本研究では,新しい知識誘導型トップダウンの注意をHOIに導入し,その関係解析を「ルックアンドサーチ」プロセスとして,シーンコンテキストモデリング(ルック)を実行し,対象のペアの知識を考慮し,両者の相互作用を識別するための視覚的手がかりを探索する手法を提案する。
一つのエンコーダ-デコーダモデルでボトムアップとトップダウンの注意を統一することで、プロセスを実装する。
実験の結果,V-COCOデータセットとHICO-DETデータセットの競合性能が得られた。
関連論文リスト
- A Review of Human-Object Interaction Detection [6.1941885271010175]
ヒトと物体の相互作用(HOI)の検出は、高レベルの視覚的理解において重要な役割を果たす。
本稿では,画像に基づくHOI検出における最近の研究を体系的に要約し,考察する。
論文 参考訳(メタデータ) (2024-08-20T08:32:39Z) - Exploring Self- and Cross-Triplet Correlations for Human-Object
Interaction Detection [38.86053346974547]
本稿では,HOI検出のための自己相関とクロストリプレット相関について検討する。
具体的には、各三重項提案を、Human、Objectがノードを表し、Actionがエッジを示すグラフとみなす。
また、インスタンスレベル、セマンティックレベル、レイアウトレベルの関係を共同で検討することで、クロストリップの依存関係についても検討する。
論文 参考訳(メタデータ) (2024-01-11T05:38:24Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Exploring Predicate Visual Context in Detecting Human-Object
Interactions [44.937383506126274]
クロスアテンションによる画像特徴の再導入について検討する。
PViCはHICO-DETおよびV-COCOベンチマークにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-08-11T15:57:45Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
人-物間相互作用(HOI)検出の課題に対処する。
既存の方法は、人間と物体の対の相互作用を独立に認識するか、複雑な外観に基づく共同推論を行う。
本稿では,抽象的空間意味表現を活用して,各対象対を記述し,二重関係グラフを用いてシーンの文脈情報を集約する。
論文 参考訳(メタデータ) (2020-08-26T17:59:40Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
本研究では,人間と物体の相互作用を直接検出する新しい完全畳み込み手法を提案する。
我々のネットワークは相互作用点を予測し、その相互作用を直接ローカライズし、分類する。
V-COCOとHICO-DETの2つの人気のあるベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2020-03-31T08:42:06Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。