Kernelized Normalizing Constant Estimation: Bridging Bayesian Quadrature
and Bayesian Optimization
- URL: http://arxiv.org/abs/2401.05716v1
- Date: Thu, 11 Jan 2024 07:45:09 GMT
- Title: Kernelized Normalizing Constant Estimation: Bridging Bayesian Quadrature
and Bayesian Optimization
- Authors: Xu Cai and Jonathan Scarlett
- Abstract summary: We show that to estimate the normalizing constant within a small relative error, the level of difficulty depends on the value of $lambda$.
We find that this pattern holds true even when the function evaluations are noisy.
- Score: 51.533164528799084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of estimating the normalizing constant
$\int e^{-\lambda f(x)}dx$ through queries to the black-box function $f$, where
$f$ belongs to a reproducing kernel Hilbert space (RKHS), and $\lambda$ is a
problem parameter. We show that to estimate the normalizing constant within a
small relative error, the level of difficulty depends on the value of
$\lambda$: When $\lambda$ approaches zero, the problem is similar to Bayesian
quadrature (BQ), while when $\lambda$ approaches infinity, the problem is
similar to Bayesian optimization (BO). More generally, the problem varies
between BQ and BO. We find that this pattern holds true even when the function
evaluations are noisy, bringing new aspects to this topic. Our findings are
supported by both algorithm-independent lower bounds and algorithmic upper
bounds, as well as simulation studies conducted on a variety of benchmark
functions.
Related papers
- LC-Tsallis-INF: Generalized Best-of-Both-Worlds Linear Contextual Bandits [38.41164102066483]
This study considers the linear contextual bandit problem with independent and identically distributed contexts.
Our proposed algorithm is based on the Follow-The-Regularized-Leader with the Tsallis entropy and referred to as the $alpha$-textual-Con (LC)-Tsallis-INF.
arXiv Detail & Related papers (2024-03-05T18:59:47Z) - The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-order but smooth objective functions is a computational problem.
We show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.
arXiv Detail & Related papers (2023-10-13T14:52:46Z) - Tight Bounds for $\gamma$-Regret via the Decision-Estimation Coefficient [88.86699022151598]
We give a statistical characterization of the $gamma$-regret for arbitrary structured bandit problems.
The $gamma$-regret emerges in structured bandit problems over a function class $mathcalF$ where finding an exact optimum of $f in mathcalF$ is intractable.
arXiv Detail & Related papers (2023-03-06T17:54:33Z) - Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness [21.865728815935665]
Two recent works established the $O(epsilon-3)$ sample complexity to obtain an $O(epsilon)$-stationary point.
However, both require a large batch size on the order of $mathrmploy(epsilon-1)$, which is not only computationally burdensome but also unsuitable for streaming applications.
In this work, we solve the prior two problems simultaneously by revisiting a simple variant of the STORM algorithm.
arXiv Detail & Related papers (2023-02-13T00:22:28Z) - Order-Optimal Error Bounds for Noisy Kernel-Based Bayesian Quadrature [42.129843613950285]
We consider functions in a em Reproducing Kernel Hilbert Space (RKHS) with the Mat'ern-$nu$ kernel.
We find that when the black-box queries are subject to Gaussian noise having variance $sigma2$, any algorithm making at most $T$ queries must incur a mean absolute error of $Omega(T-fracnud-1 + sigma T-frac12)$.
arXiv Detail & Related papers (2022-02-22T01:49:41Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
We introduce a batch algorithm inspired by finite-arm bandit algorithms.
We show that it achieves the cumulative regret upper bound $Oast(sqrtTgamma_T)$ using $O(loglog T)$ batches within time horizon $T$.
In addition, we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches.
arXiv Detail & Related papers (2021-10-15T00:54:04Z) - Learning the optimal regularizer for inverse problems [1.763934678295407]
We consider the linear inverse problem $y=Ax+epsilon$, where $Acolon Xto Y$ is a known linear operator between the separable Hilbert spaces $X$ and $Y$.
This setting covers several inverse problems in imaging including denoising, deblurring, and X-ray tomography.
Within the classical framework of regularization, we focus on the case where the regularization functional is not given a priori but learned from data.
arXiv Detail & Related papers (2021-06-11T17:14:27Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.