論文の概要: AdaMR: Adaptable Molecular Representation for Unified Pre-training Strategy
- arxiv url: http://arxiv.org/abs/2401.06166v2
- Date: Sat, 27 Apr 2024 13:28:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:05:36.988894
- Title: AdaMR: Adaptable Molecular Representation for Unified Pre-training Strategy
- Title(参考訳): AdaMR: 統一事前学習戦略のための適応可能な分子表現
- Authors: Yan Ding, Hao Cheng, Ziliang Ye, Ruyi Feng, Wei Tian, Peng Xie, Juan Zhang, Zhongze Gu,
- Abstract要約: 分子調節性表現(AdaMR)と呼ばれる,小分子薬物の大規模均一事前学習戦略を提案する。
AdaMRは、分子正準化と呼ばれる事前訓練ジョブによって達成される粒度調整可能な分子エンコーディング戦略を利用する。
6つの分子特性予測タスクと2つの生成タスクに関する事前学習モデルを微調整し、8つのタスクのうち5つについてSOTA(State-of-the-art)の結果を得た。
- 参考スコア(独自算出の注目度): 11.710702202071573
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose Adjustable Molecular Representation (AdaMR), a new large-scale uniform pre-training strategy for small-molecule drugs, as a novel unified pre-training strategy. AdaMR utilizes a granularity-adjustable molecular encoding strategy, which is accomplished through a pre-training job termed molecular canonicalization, setting it apart from recent large-scale molecular models. This adaptability in granularity enriches the model's learning capability at multiple levels and improves its performance in multi-task scenarios. Specifically, the substructure-level molecular representation preserves information about specific atom groups or arrangements, influencing chemical properties and functionalities. This proves advantageous for tasks such as property prediction. Simultaneously, the atomic-level representation, combined with generative molecular canonicalization pre-training tasks, enhances validity, novelty, and uniqueness in generative tasks. All of these features work together to give AdaMR outstanding performance on a range of downstream tasks. We fine-tuned our proposed pre-trained model on six molecular property prediction tasks (MoleculeNet datasets) and two generative tasks (ZINC250K datasets), achieving state-of-the-art (SOTA) results on five out of eight tasks.
- Abstract(参考訳): そこで我々は,小分子薬の新規な統一前訓練戦略であるAdjustable Molecular Representation (AdaMR)を提案する。
AdaMRは、分子正準化と呼ばれる事前訓練の仕事を通じて達成される粒度調整可能な分子エンコーディング戦略を利用しており、近年の大規模分子モデルとは分離されている。
この粒度の適応性は、モデルの学習能力を複数のレベルで強化し、マルチタスクシナリオのパフォーマンスを向上させる。
具体的には、サブ構造レベルの分子表現は、特定の原子群や配列に関する情報を保持し、化学的性質や機能に影響を与える。
これは、プロパティ予測のようなタスクに有利であることを示す。
同時に、原子レベルの表現と生成分子正準化事前訓練タスクが組み合わさって、生成タスクの妥当性、新規性、特異性を高める。
これらすべての機能は、さまざまな下流タスクにおいて、AdaMRに優れたパフォーマンスを提供するために協力して動作する。
6つの分子特性予測タスク (MoleculeNet データセット) と2つの生成タスク (ZINC250K データセット) に基づいて,提案した事前学習モデルを微調整し,8つのタスクのうち5つでSOTA(State-of-the-art) の結果を得た。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Improving Molecular Properties Prediction Through Latent Space Fusion [9.912768918657354]
本稿では,最先端の化学モデルから導出した潜在空間を組み合わせた多視点手法を提案する。
分子構造をグラフとして表現するMHG-GNNの埋め込みと、化学言語に根ざしたMoLFormerの埋め込みである。
本稿では,既存の最先端手法と比較して,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-20T20:29:32Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Supervised Pretraining for Molecular Force Fields and Properties
Prediction [16.86839767858162]
本研究では, 原子電荷と3次元ジオメトリーを入力とし, 分子エネルギーをラベルとする8800万分子のデータセット上で, ニューラルネットワークを事前学習することを提案する。
実験により、スクラッチからのトレーニングと比較して、事前訓練されたモデルを微調整すると、7つの分子特性予測タスクと2つの力場タスクのパフォーマンスが大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-23T08:36:50Z) - Improving Molecular Pretraining with Complementary Featurizations [20.86159731100242]
分子プレトレーニング(英: molecular pretraining)は、計算化学と薬物発見における様々な課題を解決するためのパラダイムである。
化学情報を異なる方法で伝達できることが示される。
我々は, 簡易で効果的な分子事前学習フレームワーク(MOCO)を提案する。
論文 参考訳(メタデータ) (2022-09-29T21:11:09Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。