論文の概要: A Survey on Game Theory Optimal Poker
- arxiv url: http://arxiv.org/abs/2401.06168v1
- Date: Tue, 2 Jan 2024 04:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 12:52:20.694063
- Title: A Survey on Game Theory Optimal Poker
- Title(参考訳): ゲーム理論最適ポーカーに関する調査
- Authors: Prathamesh Sonawane and Arav Chheda
- Abstract要約: 現在までに不完全な情報ゲームは解決されていない。
これにより、ポーカーは人工知能研究にとって素晴らしいテストベッドとなる。
本稿では,ポーカーボットの成功にともなう抽象化手法,ベッティングモデル,具体的な戦略について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Poker is in the family of imperfect information games unlike other games such
as chess, connect four, etc which are perfect information game instead. While
many perfect information games have been solved, no non-trivial imperfect
information game has been solved to date. This makes poker a great test bed for
Artificial Intelligence research. In this paper we firstly compare Game theory
optimal poker to Exploitative poker. Secondly, we discuss the intricacies of
abstraction techniques, betting models, and specific strategies employed by
successful poker bots like Tartanian[1] and Pluribus[6]. Thirdly, we also
explore 2-player vs multi-player games and the limitations that come when
playing with more players. Finally, this paper discusses the role of machine
learning and theoretical approaches in developing winning strategies and
suggests future directions for this rapidly evolving field.
- Abstract(参考訳): ポーカーは、チェス、コネクト4など、完全な情報ゲームである他のゲームとは異なり、不完全な情報ゲームに属する。
多くの完全情報ゲームが解決されているが、非自明な不完全な情報ゲームはこれまで解決されていない。
これによりポーカーは人工知能研究にとって素晴らしいテストベッドとなる。
本稿では,まず,ゲーム理論の最適ポーカーを悪用ポーカーと比較する。
次に,Tartanian[1] やPluribus[6] のようなポーカーボットが採用する抽象化手法,ベッティングモデル,具体的な戦略の複雑さについて論じる。
第3に,2人プレイヤ対マルチプレイヤーゲームと,より多くのプレイヤーとプレイする場合の制限についても検討する。
最後に,勝利戦略開発における機械学習と理論的アプローチの役割を論じ,この急速に発展する分野の今後の方向性を提案する。
関連論文リスト
- PokerBench: Training Large Language Models to become Professional Poker Players [3.934572858193348]
大規模言語モデル(LLM)のポーカー演奏能力を評価するベンチマークであるPokerBenchを紹介する。
不完全な情報ゲームであるポーカーは、数学、推論、計画、戦略、ゲーム理論と人間の心理学の深い理解といった様々なスキルを要求する。
PokerBenchは、11,000の最も重要なシナリオを総合的にコンパイルし、プレフロップとポストフロップのプレイを分割する。
論文 参考訳(メタデータ) (2025-01-14T18:59:03Z) - Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
IDGEプロジェクトは、大規模言語モデルで自由形式のゲーム記述を追従し、ゲームプレイプロセスを生成することにより、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオへの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
我々の最初の進歩はポーカーのIDGEの開発であり、これは幅広いポーカーの変種をサポートするだけでなく、自然言語入力を通じて高度に個別化された新しいポーカーゲームを可能にする。
論文 参考訳(メタデータ) (2024-10-17T11:16:27Z) - PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas
Hold'em via Large Language Model [14.14786217204364]
ポーカーはテキサスホールディング(Texas Hold'em)としても知られており、不完全な情報ゲーム(IIG)における典型的な研究対象となっている。
我々はテキサスホールドエムを任意の数のプレイヤーでプレイし、高い勝利率を得るためのエンドツーエンドの解法であるポーカーGPTを紹介する。
論文 参考訳(メタデータ) (2024-01-04T13:27:50Z) - All by Myself: Learning Individualized Competitive Behaviour with a
Contrastive Reinforcement Learning optimization [57.615269148301515]
競争ゲームのシナリオでは、エージェントのセットは、彼らの目標を最大化し、敵の目標を同時に最小化する決定を学習する必要があります。
本稿では,競争ゲームの表現を学習し,特定の相手の戦略をどうマップするか,それらを破壊するかを学習する3つのニューラルネットワーク層からなる新しいモデルを提案する。
我々の実験は、オフライン、オンライン、競争特化モデル、特に同じ対戦相手と複数回対戦した場合に、我々のモデルがより良いパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2023-10-02T08:11:07Z) - Are ChatGPT and GPT-4 Good Poker Players? -- A Pre-Flop Analysis [3.4111723103928173]
ポーカーテストにChatGPTとGPT-4を投入し,そのポーカースキルを評価した。
以上の結果から,両モデルともポーカーの高度な理解を示す一方で,ChatGPTとGPT-4はゲーム理論の最適ポーカープレイヤーではないことが明らかとなった。
論文 参考訳(メタデータ) (2023-08-23T23:16:35Z) - Mastering the Game of Stratego with Model-Free Multiagent Reinforcement
Learning [86.37438204416435]
Strategoは、人工知能(AI)がまだマスターしていない数少ない象徴的なボードゲームの一つだ。
ストラテゴにおける決定は、行動と結果の間に明らかな結びつきがなく、多数の個別の行動に対してなされる。
DeepNashは、ストラテゴの既存の最先端AIメソッドを破り、Gravonゲームプラットフォームで年間(2022年)と最高3位を達成した。
論文 参考訳(メタデータ) (2022-06-30T15:53:19Z) - Student of Games: A unified learning algorithm for both perfect and
imperfect information games [22.97853623156316]
Students of Gamesは、ガイド付き検索、自己学習、ゲーム理論推論を組み合わせたアルゴリズムである。
学生ゲームは,計算能力と近似能力が増大するにつれて,完全プレイに収束し,健全であることを示す。
学生はチェスと囲碁で強い成績を収め、無期限のテキサスホールディングスのポーカーで最強の公開エージェントを破り、スコットランドヤードで最先端のエージェントを倒した。
論文 参考訳(メタデータ) (2021-12-06T17:16:24Z) - Discovering Multi-Agent Auto-Curricula in Two-Player Zero-Sum Games [31.97631243571394]
明示的な人間設計なしに更新ルールの発見を自動化するフレームワークであるLMACを導入する。
意外なことに、人間のデザインがなくても、発見されたMARLアルゴリズムは競争力や性能が向上する。
LMAC は,例えば Kuhn Poker のトレーニングやPSRO の成績など,小型ゲームから大規模ゲームへの一般化が可能であることを示す。
論文 参考訳(メタデータ) (2021-06-04T22:30:25Z) - Learning to Play Imperfect-Information Games by Imitating an Oracle
Planner [77.67437357688316]
我々は、同時移動と大規模なステートアクションスペースでマルチプレイヤーの不完全な情報ゲームをプレイする学習を検討します。
我々のアプローチはモデルに基づく計画に基づいている。
我々は,Clash Royale と Pommerman のゲームにおいて,プランナーが効率的なプレイ戦略を発見することができることを示す。
論文 参考訳(メタデータ) (2020-12-22T17:29:57Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
ゲームプレイを通じて,ゲームの記述を明示せず,託宣のみにアクセス可能な,重要で一般的なゲーム解決環境について検討する。
限られたデュレーション学習フェーズにおいて、アルゴリズムは両方のプレイヤーのアクションを制御し、ゲームを学習し、それをうまくプレイする方法を学習する。
私たちのモチベーションは、クエリされた戦略プロファイルの支払いを評価するのにコストがかかる状況において、利用可能性の低い戦略を迅速に学習することにあります。
論文 参考訳(メタデータ) (2020-02-24T20:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。