Bath-engineering magnetic order in quantum spin chains: An analytic
mapping approach
- URL: http://arxiv.org/abs/2401.06227v1
- Date: Thu, 11 Jan 2024 19:10:36 GMT
- Title: Bath-engineering magnetic order in quantum spin chains: An analytic
mapping approach
- Authors: Brett Min, Nicholas Anto-Sztrikacs, Marlon Brenes, and Dvira Segal
- Abstract summary: Dissipative processes can drive different magnetic orders in quantum spin chains.
We show how to structure different magnetic orders in spin systems by controlling the locality of the attached baths.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dissipative processes can drive different magnetic orders in quantum spin
chains. Using a non-perturbative analytic mapping framework, we systematically
show how to structure different magnetic orders in spin systems by controlling
the locality of the attached baths. Our mapping approach reveals analytically
the impact of spin-bath couplings, leading to the suppression of spin
splittings, bath-dressing and mixing of spin-spin interactions, and emergence
of non-local ferromagnetic interactions between spins coupled to the same bath,
which become long-ranged for a global bath. Our general mapping method can be
readily applied to a variety of spin models: We demonstrate (i) a bath-induced
transition from antiferromangnetic (AFM) to ferromagnetic ordering in a
Heisenberg spin chain, (ii) AFM to extended Neel phase ordering within a
transverse-field Ising chain with pairwise couplings to baths, and (iii) a
quantum phase transition in the fully-connected Ising model. Our method is
non-perturbative in the system-bath coupling. It holds for a variety of
non-Markovian baths and it can be readily applied towards studying
bath-engineered phases in frustrated or topological materials.
Related papers
- Chiral Pseudo Spin Liquids in Moire Heterostructures [0.0]
We propose multi-layer moire structures in strong external magnetic fields as a novel platform for realizing frustrated Hubbard physics with topological order.
We identify the layer degree of freedom as a pseudo spin and control ring-exchange processes and concurrently quenching the kinetic energy by large external magnetic fields.
We find that this topologically ordered state remains exceptionally stable towards relevant perturbations.
arXiv Detail & Related papers (2022-09-12T18:00:10Z) - First-order transitions in spin chains coupled to quantum baths [0.0]
We show that tailoring the dissipative environment allows to change the features of continuous quantum phase transitions.
We find that spin couplings to local quantum boson baths in the Ohmic regime can drive the transition from the second to the first order even for a low dissipation strength.
arXiv Detail & Related papers (2022-07-27T20:42:08Z) - Relaxation of antiferromagnetic order and growth of R\'enyi entropy in a
generalized Heisenberg star [7.057937612386993]
We study the dynamics of a generalized Heisenberg star consisting of a spin-$S$ central spin and an inhomogeneously coupled XXZ chain of 16$ bath spins.
By preparing the XXZ bath in a N'eel state, we find that in the gapless phase of the bath even weak system-bath coupling could lead to nearly perfect relaxation of the antiferromagnetic order.
arXiv Detail & Related papers (2021-08-16T12:47:47Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Topological states and interplay between spin-orbit and Zeeman
interactions in a spinful Su-Schrieffer-Heeger nanowire [0.0]
We study the interplay between the spin-orbit and Zeeman interactions acting on a spinful Su-Schrieffer-Heeger model.
In the absence of the Zeeman field, we prove that the topology of the chain is not affected by the Rashba spin-orbit interaction.
Remarkably, the joint effect of the two spin-related interactions leads to novel edge states that appear in the gap formed by the anti-crossing of the bands of a finite spinful dimerized chain.
arXiv Detail & Related papers (2021-04-15T08:06:09Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Protecting Spin Coherence in a Tunable Heisenberg Model [0.0]
We study a family of nonlocal Heisenberg Hamiltonians with tunable anisotropy of the spin-spin couplings.
Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin.
arXiv Detail & Related papers (2020-03-13T02:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.