Chiral Pseudo Spin Liquids in Moire Heterostructures
- URL: http://arxiv.org/abs/2209.05506v2
- Date: Tue, 7 May 2024 18:07:59 GMT
- Title: Chiral Pseudo Spin Liquids in Moire Heterostructures
- Authors: Clemens Kuhlenkamp, Wilhelm Kadow, Atac Imamoglu, Michael Knap,
- Abstract summary: We propose multi-layer moire structures in strong external magnetic fields as a novel platform for realizing frustrated Hubbard physics with topological order.
We identify the layer degree of freedom as a pseudo spin and control ring-exchange processes and concurrently quenching the kinetic energy by large external magnetic fields.
We find that this topologically ordered state remains exceptionally stable towards relevant perturbations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose multi-layer moire structures in strong external magnetic fields as a novel platform for realizing highly-tunable, frustrated Hubbard physics with topological order. Identifying the layer degree of freedom as a pseudo spin, allows us to retain SU(2) symmetry while controlling ring-exchange processes and concurrently quenching the kinetic energy by large external magnetic fields. This way, a broad class of interacting Hubbard-Hofstadter states and their transitions can be studied. Remarkably, in the limit of strong interactions the system becomes Mott insulating and we find chiral pseudo spin liquid phases which are induced by the magnetic field. We find that this topologically ordered state remains exceptionally stable towards relevant perturbations. We discuss how layer pseudo-spin can be probed in near-term experiments. As the magnetic flux can be easily tuned in moire systems, our approach provides a promising route towards the experimental realization and control of topologically ordered phases of matter.
Related papers
- Experimental signatures of quantum and topological states in frustrated
magnetism [0.21766826415827592]
Frustration in magnetic materials can lead to a diverse range of novel quantum and topological states with exotic quasiparticle excitations.
We review prominent examples of such emergent phenomena, including magnetically-disordered and extensively degenerate spin ices.
We highlight experimental signatures of these often elusive phenomena and single out the most suitable experimental techniques that can be used to detect them.
arXiv Detail & Related papers (2023-10-23T16:29:06Z) - A solid-state platform for cooperative quantum dynamics driven by correlated emission [3.609024579243597]
We set the stage for the -- yet uncharted -- exploration of analogous cooperative phenomena in hybrid solid-state platforms.
We develop a comprehensive formalism for the quantum many-body dynamics of an ensemble of solid-state spin defects interacting dissipatively with a common solid-state reservoir.
Our work lays the foundation for a multi-qubit approach to quantum sensing of solid-state systems and the direct generation of many-body entanglement in spin-defect ensembles.
arXiv Detail & Related papers (2023-09-16T13:12:42Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Condensation and thermalization of an easy-plane ferromagnet in a spinor
Bose gas [0.0]
We study the thermalization of an easy-plane ferromagnet employing a homogeneous one-dimensional spinor Bose gas.
We reveal the structure of the emergent quasi-particles: one'massive'(Higgs) mode, and two'massless' (Goldstone) modes.
arXiv Detail & Related papers (2022-05-12T16:18:49Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.