Low-Loss Polarization-Maintaining Optical Router for Photonic Quantum Information Processing
- URL: http://arxiv.org/abs/2401.06369v2
- Date: Sat, 6 Apr 2024 05:20:40 GMT
- Title: Low-Loss Polarization-Maintaining Optical Router for Photonic Quantum Information Processing
- Authors: Pengfei Wang, Soyoung Baek, Keiichi Edamatsu, Fumihiro Kaneda,
- Abstract summary: We demonstrate a polarization-maintaining electro-optic router compatible with single photons.
Our custom electro-optic modulator is embedded in a configuration of a Mach-Zehnder interferometer.
We observe the performance of the router with 2-4% loss, 20 dB switching extinction ratio, 2.9 ns rise time, and $>$ 99% polarization process fidelity to an ideal identity operation.
- Score: 3.729752231378518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In photonic quantum applications, optical routers are required to handle single photons with low loss, high speed, and preservation of their quantum states. Single-photon routing with maintained polarization states is particularly important for utilizing them as qubits. Here, we demonstrate a polarization-maintaining electro-optic router compatible with single photons. Our custom electro-optic modulator is embedded in a configuration of a Mach-Zehnder interferometer, where each optical component achieves polarization-maintaining operation. We observe the performance of the router with 2-4% loss, 20 dB switching extinction ratio, 2.9 ns rise time, and $>$ 99% polarization process fidelity to an ideal identity operation.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Broadband biphoton generation and polarization splitting in a monolithic
AlGaAs chip [0.0]
On-chip generation and handling of polarized photon pairs is a central challenge for the development of quantum photonics circuits.
Here, we demonstrate a monolithic AlGaAs chip including the generation of broadband orthogonally polarized photon pairs and their polarization splitting.
The quality of the two-photon interference at the chip output is assessed via a Hong-Ou-Mandel experiment displaying a visibility of 75.5 % over the same bandwidth.
arXiv Detail & Related papers (2022-08-30T09:44:44Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Single-photon detection and cryogenic reconfigurability in Lithium
Niobate nanophotonic circuits [0.13854111346209866]
Lithium-Niobate-On-Insulator (LNOI) is emerging as a promising platform for integrated quantum photonic technologies.
Our results provide blueprints for implementing complex quantum photonic devices on the LNOI platform.
arXiv Detail & Related papers (2021-03-19T18:13:52Z) - Understanding photoluminescence in semiconductor Bragg-reflection
waveguides: Towards an integrated, GHz-rate telecom photon pair source [47.399953444625154]
semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials.
We show that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns.
We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values.
arXiv Detail & Related papers (2020-10-12T06:27:30Z) - Polarization-independent single-photon switch based on a fiber-optical
Sagnac interferometer for quantum communication networks [0.0]
We implement an optical switch capable of dynamically routing single-photons.
The routing is implemented with a pair of fast electro-optical telecom phase modulators placed inside the Sagnac loop.
We obtain an average extinction ratio of more than 19 dB between both outputs of the switch.
arXiv Detail & Related papers (2020-09-04T20:32:37Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.