Direction switchable single-photon emitter using a Rydberg polariton
- URL: http://arxiv.org/abs/2504.02503v1
- Date: Thu, 03 Apr 2025 11:35:36 GMT
- Title: Direction switchable single-photon emitter using a Rydberg polariton
- Authors: Changcheng Li, Xiao-Feng Shi, Yuechun Jiao, Jiuheng Yang, Jingxu Bai, C. Stuart Adams, Suotang Jia, Jianming Zhao,
- Abstract summary: We show a direction switchable single-photon emitter using a Rydberg polariton.<n>We propose a quantum routing of single photons with textitN output channels and unity routing efficiency.
- Score: 1.8894050583899684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: All-optical redirection or routing of single photons is essential for quantum networks. Although studied in various systems both in theory and experiment, the redirection of single photons with many output ports, compatible with large-scale photonic circuits, still needs to be explored. Here, we demonstrate a direction switchable single-photon emitter using a Rydberg polariton. The Rydberg component of the stored photon is changed using a stimulated Raman transition with a specific intermediate state. By adjusting the direction of the retrieval laser, we can redirect the emitted photon into a rich variety of alternative modes. Building upon this scheme, we propose a quantum routing of single photons with \textit{N} output channels and unity routing efficiency. In addition, the protocol reduces the effect of motional dephasing increasing the photon lifetime to $>10~\mu$s ($>20$ times photon processing time), enabling functional quantum devices based on Rydberg polaritons.
Related papers
- Efficient nuclear spin - photon entanglement with optical routing [0.0]
Quantum networks and distributed quantum computers rely on entanglement generation between photons and long-lived quantum memories.
Here, we maximize the efficiency for the detection of hybrid entanglement between a nuclear spin qubit in diamond with a photonic time-bin qubit.
Our results thus pave the way for the future high-performance quantum networks.
arXiv Detail & Related papers (2024-08-03T17:01:03Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.<n>Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit [33.7054351451505]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.<n>Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.<n>Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Routing Single Photons from a Trapped Ion Using a Photonic Integrated
Circuit [0.0]
Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes.
We demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit.
arXiv Detail & Related papers (2022-03-15T16:42:39Z) - A chiral one-dimensional atom using a quantum dot in an open microcavity [0.45507178426690204]
In nanostructures, the light-matter interaction can be engineered to be chiral.
Chiral quantum optics has applications in creating nanoscopic single-photon routers, circulators, phase-shifters and two-photon gates.
arXiv Detail & Related papers (2021-10-06T10:59:33Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum-router: Storing and redirecting light at the photon level [0.0]
We propose a method for spatially re-routing single photons or light in a coherent state with small average photon number.
The method is based on mapping the quantum state of the incoming light onto a spin-wave in an atomic ensemble as is done in quantum memories of light.
arXiv Detail & Related papers (2020-03-06T18:48:45Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.