論文の概要: Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review
- arxiv url: http://arxiv.org/abs/2401.06406v1
- Date: Fri, 12 Jan 2024 07:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 20:23:19.609910
- Title: Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review
- Title(参考訳): がん診断と予後のための知識インフォームド機械学習 : レビュー
- Authors: Lingchao Mao, Hairong Wang, Leland S. Hu, Nhan L Tran, Peter D Canoll,
Kristin R Swanson, Jing Li
- Abstract要約: バイオメディカルな知識とデータの融合を取り入れた最先端の機械学習研究について概説する。
機械学習パイプラインにおける知識表現の多様な形態と知識統合の現在の戦略について概説する。
- 参考スコア(独自算出の注目度): 2.2268038840298714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cancer remains one of the most challenging diseases to treat in the medical
field. Machine learning has enabled in-depth analysis of rich multi-omics
profiles and medical imaging for cancer diagnosis and prognosis. Despite these
advancements, machine learning models face challenges stemming from limited
labeled sample sizes, the intricate interplay of high-dimensionality data
types, the inherent heterogeneity observed among patients and within tumors,
and concerns about interpretability and consistency with existing biomedical
knowledge. One approach to surmount these challenges is to integrate biomedical
knowledge into data-driven models, which has proven potential to improve the
accuracy, robustness, and interpretability of model results. Here, we review
the state-of-the-art machine learning studies that adopted the fusion of
biomedical knowledge and data, termed knowledge-informed machine learning, for
cancer diagnosis and prognosis. Emphasizing the properties inherent in four
primary data types including clinical, imaging, molecular, and treatment data,
we highlight modeling considerations relevant to these contexts. We provide an
overview of diverse forms of knowledge representation and current strategies of
knowledge integration into machine learning pipelines with concrete examples.
We conclude the review article by discussing future directions to advance
cancer research through knowledge-informed machine learning.
- Abstract(参考訳): がんは、医学分野で治療すべき最も困難な病気の1つです。
機械学習は、がんの診断と予後のための豊富なマルチオミクスプロファイルと医療画像の詳細な分析を可能にした。
これらの進歩にもかかわらず、機械学習モデルは、制限されたラベル付きサンプルサイズ、高次元データ型の複雑な相互作用、患者と腫瘍の間で観察される固有の異質性、そして既存の生体医学的知識との解釈可能性と一貫性に関する懸念から生じる課題に直面している。
これらの課題を克服するための1つのアプローチは、バイオメディカル知識をデータ駆動モデルに統合することであり、これはモデル結果の正確性、堅牢性、解釈可能性を改善する可能性を証明している。
本稿では, 医学的知識とデータの融合を応用した最先端の機械学習研究, 知識に富んだ機械学習, がん診断と予後について概説する。
臨床, 画像, 分子, 治療データを含む4つの主要なデータ型に固有の特性を強調し, これらの文脈に関するモデリング上の考察を強調した。
具体的な例として,多様な形態の知識表現と,機械学習パイプラインへの知識統合の現在の戦略について概説する。
本稿では,知識インフォームド機械学習によるがん研究の進展に向けた今後の方向性について論じる。
関連論文リスト
- Multi-Omic and Quantum Machine Learning Integration for Lung Subtypes Classification [0.0]
量子コンピューティングと機械学習の融合は、マルチオミクスデータセット内の複雑なパターンを解き放つことを約束している。
我々は,バイオマーカー発見の可能性を秘めたLUADデータセットとLUSCデータセットの最適な識別方法を開発した。
論文 参考訳(メタデータ) (2024-10-02T23:16:31Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - Recent advancement in Disease Diagnostic using machine learning:
Systematic survey of decades, comparisons, and challenges [0.0]
バイオメディカル領域におけるパターン認識と機械学習は、疾患の検出と診断の精度を高めることを約束する。
本稿では,肝炎,糖尿病,肝疾患,デング熱,心臓病などの疾患を検出するための機械学習アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2023-07-31T16:35:35Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
多様なデータ型を統合することで、がんの診断と治療の精度と信頼性が向上する。
ディープニューラルネットワークは、洗練されたマルチモーダルデータ融合アプローチの開発を促進する。
グラフニューラルネットワーク(GNN)やトランスフォーマーといった最近のディープラーニングフレームワークは、マルチモーダル学習において顕著な成功を収めている。
論文 参考訳(メタデータ) (2023-03-11T17:52:03Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - A review of machine learning approaches, challenges and prospects for
computational tumor pathology [1.2036642553849346]
腫瘍計算病理学は、データ統合、ハードウェア処理、ネットワーク共有帯域幅、機械学習技術に挑戦する。
本稿では,病的・技術的観点から,計算病理学における前処理手法について検討する。
計算病理学応用における機械学習の課題と展望について論じる。
論文 参考訳(メタデータ) (2022-05-31T14:56:01Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。