Optimal and robust error filtration for quantum information processing
- URL: http://arxiv.org/abs/2409.01398v2
- Date: Mon, 03 Feb 2025 20:28:31 GMT
- Title: Optimal and robust error filtration for quantum information processing
- Authors: Aaqib Ali, Giovanni Scala, Cosmo Lupo,
- Abstract summary: Error filtration is a hardware scheme that mitigates noise by exploiting auxiliary qubits and entangling gates.
We benchmark our approach against figures of merit that correspond to different applications.
- Score: 0.0
- License:
- Abstract: Error filtration is a hardware scheme that mitigates noise by exploiting auxiliary qubits and entangling gates. Although both signal and ancillas are subject to local noise, constructive interference(and in some cases post-selection) allows us to reduce the noise level in the signal qubit. Here we determine the optimal entangling unitary gates that make the qubits interfere most effectively,starting from a set of universal gates and proceeding by optimizing suitable functionals by gradient-descent or stochastic approximation. We examine how our optimized scheme behaves under imperfect implementation, where ancillary qubits may be noisy or subject to cross-talk. Even with these imperfections, we find that adding more ancillary qubits helps in protecting quantum information.We benchmark our approach against figures of merit that correspond to different applications, including entanglement fidelity, quantum Fisher information (for applications in quantum sensing),and CHSH value (for cryptographic applications), with one, two, and three ancillary qubits. With one and two ancillas we also provide analytical explicit expressions from an ansatz for the optimal unitary. We also compare our method with the recently introduced Superposed Quantum Error Mitigation (SQEM) scheme based on superposition of causal orders, and show that, for a wide range of noise strengths, our approach may outperform SQEM in terms of effectiveness and robustness.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Optimized Noise Suppression for Quantum Circuits [0.40964539027092917]
Crosstalk noise is a severe error source in, e.g., cross-resonance based superconducting quantum processors.
Intrepid programming algorithm extends previous work on optimized qubit routing by swap insertion.
We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits.
arXiv Detail & Related papers (2024-01-12T07:34:59Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Reinforcement learning pulses for transmon qubit entangling gates [0.0]
We utilize a continuous-control reinforcement learning algorithm to design entangling two-qubit gates for superconducting qubits.
We demonstrate the capability to generate novel pulse sequences that outperform the standard cross-resonance gates.
arXiv Detail & Related papers (2023-11-07T03:19:19Z) - Charge-parity switching effects and optimisation of transmon-qubit design parameters [0.0]
We identify optimal ranges for qubit design parameters, grounded in comprehensive noise modeling.
A charge-parity switch can be the dominant quasiparticle-related error source of a two-qubit gate.
We present a performance metric for quantum circuit execution.
arXiv Detail & Related papers (2023-09-29T12:05:27Z) - Superposed Quantum Error Mitigation [1.732837834702512]
Overcoming the influence of noise and imperfections is a major challenge in quantum computing.
We present an approach based on applying a desired unitary computation in superposition between the system of interest and some auxiliary states.
We demonstrate, numerically and on the IBM Quantum Platform, that parallel applications of the same operation lead to significant noise mitigation.
arXiv Detail & Related papers (2023-04-17T18:01:01Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.