論文の概要: A Prototype on the Feasibility of Learning Spatial Provenance in XBee and LoRa Networks
- arxiv url: http://arxiv.org/abs/2401.06638v1
- Date: Fri, 12 Jan 2024 15:36:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 12:37:33.006769
- Title: A Prototype on the Feasibility of Learning Spatial Provenance in XBee and LoRa Networks
- Title(参考訳): XBee と LoRa ネットワークにおける空間性学習の可能性に関する試作
- Authors: Manish Bansal, Pramsu Shrivastava, J. Harshan,
- Abstract要約: V2Xネットワークでは、通常、ロードサイドユニット(RSU)は参加車両の位置情報を収集して、セキュリティとネットワーク診断機能を提供したいと考えている。
本稿では、車両がプライバシーをある程度侵害し、RSUの要求に応じて座標の低精度な変種を共有することに同意した新しい空間改善フレームワークを提案する。
実演では、より少ないパケットでロー・トゥ・モデレートの精度のローカライズを達成できることが示され、次世代車載ネットワークがリアルタイムセキュリティとネットワークを提供する方法を含むことをアピールする。
- 参考スコア(独自算出の注目度): 0.732582506267845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Vehicle-to-Everything (V2X) networks that involve multi-hop communication, the Road Side Units (RSUs) typically desire to gather the location information of the participating vehicles to provide security and network-diagnostics features. Although Global Positioning System (GPS) based localization is widely used by vehicles for navigation; they may not forward their exact GPS coordinates to the RSUs due to privacy issues. Therefore, to balance the high-localization requirements of RSU and the privacy of the vehicles, we demonstrate a new spatial-provenance framework wherein the vehicles agree to compromise their privacy to a certain extent and share a low-precision variant of its coordinates in agreement with the demands of the RSU. To study the deployment feasibility of the proposed framework in state-of-the-art wireless standards, we propose a testbed of ZigBee and LoRa devices and implement the underlying protocols on their stack using correlated Bloom filters and Rake compression algorithms. Our demonstrations reveal that low-to-moderate precision localization can be achieved in fewer packets, thus making an appealing case for next-generation vehicular networks to include our methods for providing real-time security and network-diagnostics features.
- Abstract(参考訳): マルチホップ通信を含むV2Xネットワークでは、ロードサイドユニット(RSU)は通常、参加車両の位置情報を収集して、セキュリティとネットワーク診断機能を提供したいと考えている。
グローバル・ポジショニング・システム(GPS)に基づくローカライゼーションは、車両のナビゲーションに広く用いられているが、プライバシの問題により、正確なGPS座標をRSUに転送することはできない。
したがって、RSUの高位置化要件と車両のプライバシのバランスをとるために、車両はプライバシーをある程度妥協し、RSUの要求に応じてその座標の低精度な変種を共有することに同意する新しい空間改善フレームワークを実証する。
最新の無線規格におけるフレームワークの展開可能性を検討するため,ZigBee と LoRa デバイスのテストベッドを提案し,Bloom フィルタと Rake 圧縮アルゴリズムを用いて基盤プロトコルをスタック上に実装した。
実演では,ロー・ツー・モデレートの高精度なローカライゼーションをパケット数が少ない場合に実現できることが示され,次世代車載ネットワークにおいて,リアルタイムセキュリティやネットワーク診断機能の提供方法が注目されている。
関連論文リスト
- A Location Validation Technique to Mitigate GPS Spoofing Attacks in IEEE 802.11p based Fleet Operator's Network of Electric Vehicles [2.5582913676558205]
車両再バランスアプリケーションは、定期的に車両のGPS位置情報を使用して、その車両を別の充電ステーションに移動して再バランスを行う。
ネットワークに潜んでいる悪意のある攻撃者は、対象車両のGPS位置情報パケットを偽装し、車両の位置を誤解釈する。
本稿では,以前の位置とロードマップに基づいて,車両の現在位置を検証できる位置追跡手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:42:27Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Your Car Tells Me Where You Drove: A Novel Path Inference Attack via CAN Bus and OBD-II Data [57.22545280370174]
On Path Diagnostic - Intrusion & Inference (OPD-II) は物理カーモデルとマップマッチングアルゴリズムを利用した新しい経路推論攻撃である。
我々は4台の異なる車両と41トラックの道路および交通シナリオに対する攻撃を実行した。
論文 参考訳(メタデータ) (2024-06-30T04:21:46Z) - Extending RAIM with a Gaussian Mixture of Opportunistic Information [1.9688858888666714]
元の受信機自動整合性監視(RAIM)は安全のために設計されていない。
我々は、地上インフラや搭載センサーから得られるすべての機会情報、すなわち計測情報を組み込むことでRAIMを拡張した。
本研究の目的は,拡張RAIM溶液から得られる位置を解析し,スプーフィングの可能性を評価することである。
論文 参考訳(メタデータ) (2024-02-05T19:03:18Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
物体検出は、IoV(Internet of Vehicles)の鍵となる技術の一つである
現在のオブジェクト検出方法は、主に集中的な深層トレーニングに基づいており、エッジデバイスが取得したセンシティブなデータをサーバにアップロードする必要がある。
そこで本研究では,よく訓練されたローカルモデルを中央サーバで共有する,フェデレート学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-07T08:58:41Z) - Hybrid PLS-ML Authentication Scheme for V2I Communication Networks [0.0]
本稿では,送信機の位置をデバイス指紋として利用して,PLS(Hybrid physical Layer Security)-machine Learning (ML)認証手法を提案する。
我々は、ToAを道路側ユニット(RSU)で推定し、基地局(BS)で送信機の座標を抽出する、ToA(Time-of-arrival)ベースのローカライゼーション機構を用いる。
移動車両の移動性を追跡するため,複数のシステムパラメータに基づいて学習したMLモデルを用いて,提案した位置ベース機構が検出に失敗した場合のベースラインスキームを著しく上回っていることを観察した。
論文 参考訳(メタデータ) (2023-08-28T16:34:50Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset [103.35624417260541]
分散車両調整は、未整備の道路環境において有用である。
我々はバークレーのDeepDrive Droneデータセットを収集し、近くのドライバーが観察する暗黙の「社会的エチケット」を研究する。
このデータセットは、人間のドライバーが採用する分散マルチエージェント計画と、リモートセンシング設定におけるコンピュータビジョンの研究に主に関心がある。
論文 参考訳(メタデータ) (2022-09-19T05:06:57Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles [7.7003495898919265]
本研究では, 周辺物体の検出精度を高めるために, 深層強化学習を用いた協調認識方式を提案する。
本手法は、車両通信網におけるネットワーク負荷を軽減し、通信信頼性を高める。
論文 参考訳(メタデータ) (2020-04-23T01:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。