論文の概要: HA-HI: Synergising fMRI and DTI through Hierarchical Alignments and
Hierarchical Interactions for Mild Cognitive Impairment Diagnosis
- arxiv url: http://arxiv.org/abs/2401.06780v1
- Date: Tue, 2 Jan 2024 12:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 12:41:55.997486
- Title: HA-HI: Synergising fMRI and DTI through Hierarchical Alignments and
Hierarchical Interactions for Mild Cognitive Impairment Diagnosis
- Title(参考訳): HA-HI:軽度認知障害診断のための階層的アライメントと階層的相互作用によるfMRIとDTIの相乗化
- Authors: Xiongri Shen, Zhenxi Song, Linling Li, Min Zhang, Lingyan Liang
Honghai Liu, Demao Deng, Zhiguo Zhang
- Abstract要約: 軽度認知障害(MCI)と主観的認知低下(SCD)の診断のための新しい階層的アライメントと階層的相互作用(HA-HI)法を導入する。
HA-HIは、様々な特徴型を整列し、それらの相互作用を階層的に最大化することで、MCIまたはSCD関連の重要な地域および接続特性を効率的に学習する。
提案手法の解釈可能性を高めるために,MCI/SCDを示す重要な脳領域と接続を明らかにするSynergistic Activation Map (SAM) 技術を開発した。
- 参考スコア(独自算出の注目度): 10.028997265879598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early diagnosis of mild cognitive impairment (MCI) and subjective cognitive
decline (SCD) utilizing multi-modal magnetic resonance imaging (MRI) is a
pivotal area of research. While various regional and connectivity features from
functional MRI (fMRI) and diffusion tensor imaging (DTI) have been employed to
develop diagnosis models, most studies integrate these features without
adequately addressing their alignment and interactions. This limits the
potential to fully exploit the synergistic contributions of combined features
and modalities. To solve this gap, our study introduces a novel Hierarchical
Alignments and Hierarchical Interactions (HA-HI) method for MCI and SCD
classification, leveraging the combined strengths of fMRI and DTI. HA-HI
efficiently learns significant MCI- or SCD- related regional and connectivity
features by aligning various feature types and hierarchically maximizing their
interactions. Furthermore, to enhance the interpretability of our approach, we
have developed the Synergistic Activation Map (SAM) technique, revealing the
critical brain regions and connections that are indicative of MCI/SCD.
Comprehensive evaluations on the ADNI dataset and our self-collected data
demonstrate that HA-HI outperforms other existing methods in diagnosing MCI and
SCD, making it a potentially vital and interpretable tool for early detection.
The implementation of this method is publicly accessible at
https://github.com/ICI-BCI/Dual-MRI-HA-HI.git.
- Abstract(参考訳): 多モードMRIを用いた軽度認知障害(MCI)と主観的認知低下(SCD)の早期診断は研究の要点である。
機能的MRI(fMRI)や拡散テンソルイメージング(DTI)による様々な局所的および接続性の特徴が診断モデルの開発に用いられているが、ほとんどの研究は、それらのアライメントと相互作用に適切に対処することなくこれらの特徴を統合する。
このことは、組み合わせた特徴とモダリティの相乗的貢献を完全に活用する可能性を制限する。
このギャップを解消するために,本研究では,fMRIとDTIを併用した,MCIとSCD分類のための新しい階層的アライメントと階層的インタラクション(HA-HI)手法を提案する。
HA-HIは、様々な特徴型を整列し、それらの相互作用を階層的に最大化することで、MCIまたはSCD関連の重要な地域および接続特性を効率的に学習する。
さらに,本手法の解釈可能性を高めるために,MCI/SCDを示す重要な脳領域と接続を明らかにするSynergistic Activation Map(SAM)技術を開発した。
adniデータセットと自己収集データに関する包括的評価は、ha-hiがmciとscdの診断において他の既存の方法よりも優れていることを示している。
この手法の実装はhttps://github.com/ICI-BCI/Dual-MRI-HA-HI.gitで公開されている。
関連論文リスト
- Copula-Linked Parallel ICA: A Method for Coupling Structural and Functional MRI brain Networks [0.5277756703318045]
機能的MRI(fMRI)と構造的MRI(sMRI)を融合させる以前の研究では、このアプローチの利点が示されている。
我々は、深層学習フレームワーク、コプラと独立成分分析(ICA)を組み合わせた新しい融合法、コプラリンク並列ICA(CLiP-ICA)を開発した。
CLiP-ICAは、脳、感覚運動、視覚、認知制御、デフォルトモードネットワークなど、強い結合と弱い結合sMRIとfMRIネットワークの両方を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-10-14T01:35:41Z) - Multi-modal Cross-domain Self-supervised Pre-training for fMRI and EEG Fusion [3.8153469790341084]
ドメイン間でのマルチモーダル情報の相乗化に自己教師付き学習を活用する新しい手法を提案する。
提案手法を利用した大規模事前学習データセットと事前学習MCSPモデルを構築した。
本研究は,fMRIと脳波の融合の著しい進展に寄与し,クロスドメイン機能の統合を図っている。
論文 参考訳(メタデータ) (2024-09-27T20:25:17Z) - Leveraging Persistent Homology for Differential Diagnosis of Mild Cognitive Impairment [2.474908349649168]
軽度認知障害(MCI)は、認知機能の微妙な変化が特徴であり、しばしば脳の接続の混乱と関連している。
本研究では,6種類の被験者の脳ネットワークに関連する神経変性のトポロジカルな変化を調べるための,新しい微粒化分析法を提案する。
論文 参考訳(メタデータ) (2024-08-28T09:01:55Z) - Integrated Brain Connectivity Analysis with fMRI, DTI, and sMRI Powered by Interpretable Graph Neural Networks [17.063133885403154]
我々は, 磁気共鳴イメージング, 拡散テンソルイメージング, 構造MRIを結合構造に統合した。
提案手法は,ニューラルネットワークの重み付けにマスキング戦略を導入し,マルチモーダル画像データの総合的アマルガメーションを容易にする。
このモデルは、ヒューマンコネクトームプロジェクト(Human Connectome Project)の開発研究に応用され、若年期のマルチモーダルイメージングと認知機能との関係を明らかにする。
論文 参考訳(メタデータ) (2024-08-26T13:16:42Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - An Interpretable Cross-Attentive Multi-modal MRI Fusion Framework for Schizophrenia Diagnosis [46.58592655409785]
本稿では,fMRI と sMRI のモーダル内およびモーダル間関係を捉えるために,CAMF (Cross-Attentive Multi-modal Fusion framework) を提案する。
提案手法は,2つの広範囲なマルチモーダル脳画像データセットを用いた評価により,分類精度を著しく向上させる。
勾配誘導Score-CAMは、統合失調症に関連する重要な機能的ネットワークと脳領域の解釈に応用される。
論文 参考訳(メタデータ) (2024-03-29T20:32:30Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。