Modeling Latent Selection with Structural Causal Models
- URL: http://arxiv.org/abs/2401.06925v2
- Date: Thu, 1 Aug 2024 08:51:46 GMT
- Title: Modeling Latent Selection with Structural Causal Models
- Authors: Leihao Chen, Onno Zoeter, Joris M. Mooij,
- Abstract summary: We introduce a conditioning operation on Structural Causal Models (SCMs) to model latent selection from a causal perspective.
We show that the conditioning operation transforms an SCM with the presence of an explicit latent selection mechanism into an SCM without such selection mechanism.
- Score: 1.4747234049753455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selection bias is ubiquitous in real-world data, and can lead to misleading results if not dealt with properly. We introduce a conditioning operation on Structural Causal Models (SCMs) to model latent selection from a causal perspective. We show that the conditioning operation transforms an SCM with the presence of an explicit latent selection mechanism into an SCM without such selection mechanism, which partially encodes the causal semantics of the selected subpopulation according to the original SCM. Furthermore, we show that this conditioning operation preserves the simplicity, acyclicity, and linearity of SCMs, and commutes with marginalization. Thanks to these properties, combined with marginalization and intervention, the conditioning operation offers a valuable tool for conducting causal reasoning tasks within causal models where latent details have been abstracted away. We demonstrate by example how classical results of causal inference can be generalized to include selection bias and how the conditioning operation helps with modeling of real-world problems.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - SeRpEnt: Selective Resampling for Expressive State Space Models [5.7918134313332414]
State Space Models (SSMs) have recently enjoyed a rise to prominence in the field of deep learning for sequence modeling.
We show how selective time intervals in Mamba act as linear approximators of information.
We propose our SeRpEnt architecture, a SSM that further exploits selectivity to compress sequences in an information-aware fashion.
arXiv Detail & Related papers (2025-01-20T20:27:50Z) - Continuous Bayesian Model Selection for Multivariate Causal Discovery [22.945274948173182]
Current causal discovery approaches require restrictive model assumptions or assume access to interventional data to ensure structure identifiability.
Recent work has shown that Bayesian model selection can greatly improve accuracy by exchanging restrictive modelling for more flexible assumptions.
We demonstrate the competitiveness of our approach on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-11-15T12:55:05Z) - Lexicographic optimization-based approaches to learning a representative model for multi-criteria sorting with non-monotonic criteria [5.374419989598479]
This paper proposes some approaches to learning a representative model for MCS problems with non-monotonic criteria.
We first define some transformation functions to map the marginal values and category thresholds into a UTA-like functional space.
We then construct constraint sets to model non-monotonic criteria in MCS problems and develop optimization models to check and rectify the inconsistency of the decision maker's assignment example preference information.
arXiv Detail & Related papers (2024-09-03T05:29:05Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences.
We show that selection structure is identifiable without any parametric assumptions or interventional experiments.
We also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies.
arXiv Detail & Related papers (2024-06-29T20:56:34Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems.
The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors.
arXiv Detail & Related papers (2023-04-17T00:10:56Z) - Representation Disentaglement via Regularization by Causal
Identification [3.9160947065896803]
We propose the use of a causal collider structured model to describe the underlying data generative process assumptions in disentangled representation learning.
For this, we propose regularization by identification (ReI), a modular regularization engine designed to align the behavior of large scale generative models with the disentanglement constraints imposed by causal identification.
arXiv Detail & Related papers (2023-02-28T23:18:54Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Attitudes and Latent Class Choice Models using Machine learning [0.0]
We present a method of efficiently incorporating attitudinal indicators in the specification of Latent Class Choice Models (LCCM)
This formulation overcomes structural equations in its capability of exploring the relationship between the attitudinal indicators and the decision choice.
We test our proposed framework for estimating a Car-Sharing (CS) service subscription choice with stated preference data from Copenhagen, Denmark.
arXiv Detail & Related papers (2023-02-20T10:03:01Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.