A Causal Adjustment Module for Debiasing Scene Graph Generation
- URL: http://arxiv.org/abs/2503.17862v1
- Date: Sat, 22 Mar 2025 20:44:01 GMT
- Title: A Causal Adjustment Module for Debiasing Scene Graph Generation
- Authors: Li Liu, Shuzhou Sun, Shuaifeng Zhi, Fan Shi, Zhen Liu, Janne Heikkilä, Yongxiang Liu,
- Abstract summary: We employ causal inference techniques to model the causality among skewed distributions.<n>Our method enables the composition of zero-shot relationships, thereby enhancing the model's ability to recognize such relationships.
- Score: 28.44150555570101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recent debiasing methods for Scene Graph Generation (SGG) have shown impressive performance, these efforts often attribute model bias solely to the long-tail distribution of relationships, overlooking the more profound causes stemming from skewed object and object pair distributions. In this paper, we employ causal inference techniques to model the causality among these observed skewed distributions. Our insight lies in the ability of causal inference to capture the unobservable causal effects between complex distributions, which is crucial for tracing the roots of model bias. Specifically, we introduce the Mediator-based Causal Chain Model (MCCM), which, in addition to modeling causality among objects, object pairs, and relationships, incorporates mediator variables, i.e., cooccurrence distribution, for complementing the causality. Following this, we propose the Causal Adjustment Module (CAModule) to estimate the modeled causal structure, using variables from MCCM as inputs to produce a set of adjustment factors aimed at correcting biased model predictions. Moreover, our method enables the composition of zero-shot relationships, thereby enhancing the model's ability to recognize such relationships. Experiments conducted across various SGG backbones and popular benchmarks demonstrate that CAModule achieves state-of-the-art mean recall rates, with significant improvements also observed on the challenging zero-shot recall rate metric.
Related papers
- Spatial Reasoning with Denoising Models [49.83744014336816]
We introduce a framework to perform reasoning over sets of continuous variables via denoising generative models.<n>We demonstrate for the first time, that order of generation can successfully be predicted by the denoising network itself.
arXiv Detail & Related papers (2025-02-28T14:08:30Z) - Fighting Spurious Correlations in Text Classification via a Causal Learning Perspective [2.7813683000222653]
We propose the Causally Calibrated Robust ( CCR) to reduce models' reliance on spurious correlations.<n> CCR integrates a causal feature selection method based on counterfactual reasoning, along with an inverse propensity weighting (IPW) loss function.<n>We show that CCR state-of-the-art performance among methods without group labels, and in some cases, it can compete with the models that utilize group labels.
arXiv Detail & Related papers (2024-11-01T21:29:07Z) - Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
We build a structural causal model (SCM) to describe the causality within data generation process.
We further conduct a thorough analysis of the mechanisms underlying spurious correlation.
In this regard, we propose to control confounding bias in OOD generalization by introducing a propensity score weighted estimator.
arXiv Detail & Related papers (2024-06-17T13:22:00Z) - Unbiased Scene Graph Generation via Two-stage Causal Modeling [11.390135312161044]
We propose Two-stage Causal Modeling (TsCM) for the Scene Graph Generation (SGG) task.
TsCM takes the long-tailed distribution and semantic confusion as confounders to the Structural Causal Model (SCM) and then decouples the causal intervention into two stages.
Our method can achieve state-of-the-art performance in terms of mean recall rate.
arXiv Detail & Related papers (2023-07-11T14:11:24Z) - Context De-confounded Emotion Recognition [12.037240778629346]
Context-Aware Emotion Recognition (CAER) aims to perceive the emotional states of the target person with contextual information.
A long-overlooked issue is that a context bias in existing datasets leads to a significantly unbalanced distribution of emotional states.
This paper provides a causality-based perspective to disentangle the models from the impact of such bias, and formulate the causalities among variables in the CAER task.
arXiv Detail & Related papers (2023-03-21T15:12:20Z) - De-Biasing Generative Models using Counterfactual Methods [0.0]
We propose a new decoder based framework named the Causal Counterfactual Generative Model (CCGM)
Our proposed method combines a causal latent space VAE model with specific modification to emphasize causal fidelity.
We explore how better disentanglement of causal learning and encoding/decoding generates higher causal intervention quality.
arXiv Detail & Related papers (2022-07-04T16:53:20Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
We propose a new regularizer, namely, Equivariance Regularizer (ER)
ER can enhance the generalization ability of the model by employing the semantic equivariance between the head and tail entities.
The experimental results indicate a clear and substantial improvement over the state-of-the-art relation prediction methods.
arXiv Detail & Related papers (2022-06-24T08:18:05Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.