Quantum Thermodynamics of Small Systems: The Anyonic Otto Engine
- URL: http://arxiv.org/abs/2401.07177v1
- Date: Sun, 14 Jan 2024 00:09:25 GMT
- Title: Quantum Thermodynamics of Small Systems: The Anyonic Otto Engine
- Authors: H S Mani, Ramadas N, V V Sreedhar
- Abstract summary: We study the quantum thermodynamics of small systems of anyons, with specific emphasis on the quantum Otto engine which uses, as its working medium, just one or two anyons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in applying thermodynamic ideas to quantum systems have
raised the novel prospect of using non-thermal, non-classical sources of
energy, of purely quantum origin, like quantum statistics, to extract
mechanical work in macroscopic quantum systems like Bose-Einstein condensates.
On the other hand, thermodynamic ideas have also been applied to small systems
like single molecules and quantum dots. In this paper we study the quantum
thermodynamics of small systems of anyons, with specific emphasis on the
quantum Otto engine which uses, as its working medium, just one or two anyons.
Formulae are derived for the efficiency of the Otto engine as a function of the
statistics parameter.
Related papers
- Quantum Thermodynamics [0.0]
Theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm.
Lecture notes provide an introduction to the thermodynamics of small quantum systems.
arXiv Detail & Related papers (2024-06-27T14:28:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Leveraging Machine Learning to Gain Insights on Quantum Thermodynamic
Entropy [0.0]
We present a thermodynamic analysis of a quantum engine that uses a single quantum particle as its working fluid.
Our design is modeled after the classically-chaotic Szilard Map and involves a thermodynamic cycle of measurement, thermal-energy extraction, and memory reset.
arXiv Detail & Related papers (2023-05-08T18:16:28Z) - Exploring quantum thermodynamics with NMR [0.0]
Quantum thermodynamics seeks to extend non-equilibrium thermodynamics to small quantum systems where non-classical features are essential to its description.
This review article provides an overview of some concepts in quantum thermodynamics highlighting test-of-principles experiments using nuclear magnetic resonance techniques.
arXiv Detail & Related papers (2023-03-15T20:21:10Z) - Quantum Engines and Refrigerators [0.0]
Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work.
In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play.
Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations.
arXiv Detail & Related papers (2023-02-01T19:46:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Szilard Engines as Quantum Thermodynamical Systems [1.3764085113103222]
We analyze an engine whose working fluid consists of a single quantum particle.
We show that the quantum engine obeys the Second Law.
However, the quantum engine does so via substantially different mechanisms.
arXiv Detail & Related papers (2020-10-27T22:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.