論文の概要: Polariton lattices as binarized neuromorphic networks
- arxiv url: http://arxiv.org/abs/2401.07232v1
- Date: Sun, 14 Jan 2024 08:32:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 19:06:13.431330
- Title: Polariton lattices as binarized neuromorphic networks
- Title(参考訳): 二項化ニューロモルフィックネットワークとしてのポラリトン格子
- Authors: Evgeny Sedov and Alexey Kavokin
- Abstract要約: 本研究では, 励起子-偏光子縮合格子に基づく新規なニューロモルフィックネットワークアーキテクチャを導入し, 非共鳴光ポンピングにより複雑に相互接続し, エネルギー化する。
このネットワークは、ペア結合された凝縮体の空間コヒーレンスによって促進される各ニューロンがバイナリ操作を行うバイナリ・フレームワークを採用している。
ネットワークの性能は手書き文字認識のためのMNISTデータセットを用いて評価され、既存の偏極性ニューロモルフィックシステムよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel neuromorphic network architecture based on a lattice of
exciton-polariton condensates, intricately interconnected and energized through
non-resonant optical pumping. The network employs a binary framework, where
each neuron, facilitated by the spatial coherence of pairwise coupled
condensates, performs binary operations. This coherence, emerging from the
ballistic propagation of polaritons, ensures efficient, network-wide
communication. The binary neuron switching mechanism, driven by the nonlinear
repulsion through the excitonic component of polaritons, offers computational
efficiency and scalability advantages over continuous weight neural networks.
Our network enables parallel processing, enhancing computational speed compared
to sequential or pulse-coded binary systems. The system's performance was
evaluated using the MNIST dataset for handwritten digit recognition, showcasing
the potential to outperform existing polaritonic neuromorphic systems, as
demonstrated by its impressive predicted classification accuracy of up to
97.5%.
- Abstract(参考訳): 本研究では, 励起子-偏光子縮合格子に基づく新規なニューロモルフィックネットワークアーキテクチャを導入し, 非共鳴光ポンピングにより複雑に相互接続し, エネルギー化する。
ネットワークはバイナリフレームワークを採用しており、各ニューロンはペア結合凝縮の空間的コヒーレンスによって促進され、バイナリ操作を行う。
このコヒーレンスはポラリトンの弾道伝播から生まれ、効率的でネットワーク全体の通信を保証する。
双対ニューロンスイッチング機構は、偏光子の励起成分を介して非線形反発によって駆動され、連続重み付けニューラルネットワークよりも計算効率とスケーラビリティの利点を提供する。
本ネットワークは並列処理が可能であり,シーケンシャルおよびパルス符号化バイナリシステムと比較して計算速度が向上する。
システムの性能は手書き文字認識のためのMNISTデータセットを用いて評価され、97.5%の予測精度で示されるように、既存の偏極性ニューロモルフィックシステムを上回る可能性を示した。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Parallel Hybrid Networks: an interplay between quantum and classical
neural networks [0.0]
我々は、データセットの入力を並列に渡す、新しい解釈可能なハイブリッド量子ニューラルネットワークのクラスを導入する。
この主張は、周期分布からサンプリングされた2つの合成データセットに対して、雑音としてプロテクションを付加したものである。
論文 参考訳(メタデータ) (2023-03-06T15:45:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Neural networks for on-the-fly single-shot state classification [0.0]
単発量子計測における状態分類へのニューラルネットワークの適用について検討する。
本手法は,ハードドライブへの大規模なデータ転送を必要とせず,オーバヘッドなしでオンザフライデータ処理が可能となる。
論文 参考訳(メタデータ) (2021-07-13T05:29:59Z) - An error-propagation spiking neural network compatible with neuromorphic
processors [2.432141667343098]
本稿では,局所的な重み更新機構を用いたバックプロパゲーションを近似したスパイクに基づく学習手法を提案する。
本稿では,重み更新機構による誤り信号のバックプロパゲートを可能にするネットワークアーキテクチャを提案する。
この研究は、超低消費電力混合信号ニューロモルフィック処理系の設計に向けた第一歩である。
論文 参考訳(メタデータ) (2021-04-12T07:21:08Z) - Training Binary Neural Networks through Learning with Noisy Supervision [76.26677550127656]
本稿では,ニューラルネットワーク上の二項化操作を学習の観点から定式化する。
ベンチマークデータセットの実験結果から,提案手法がベースラインよりも一貫した改善を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-10-10T01:59:39Z) - Inference with Artificial Neural Networks on Analog Neuromorphic
Hardware [0.0]
BrainScaleS-2 ASICは混合信号ニューロンとシナプス回路から構成される。
システムは、人工ニューラルネットワークのベクトル行列乗算と累積モードでも動作する。
論文 参考訳(メタデータ) (2020-06-23T17:25:06Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。