BoNuS: Boundary Mining for Nuclei Segmentation with Partial Point Labels
- URL: http://arxiv.org/abs/2401.07437v1
- Date: Mon, 15 Jan 2024 02:50:39 GMT
- Title: BoNuS: Boundary Mining for Nuclei Segmentation with Partial Point Labels
- Authors: Yi Lin, Zeyu Wang, Dong Zhang, Kwang-Ting Cheng, Hao Chen
- Abstract summary: We propose a weakly-supervised nuclei segmentation method that only requires partial point labels of nuclei.
Specifically, we propose a novel boundary mining framework for nuclei segmentation, named BoNuS, which simultaneously learns nuclei interior and boundary information from the point labels.
We consider a nuclei detection module with curriculum learning to detect the missing nuclei with prior morphological knowledge.
- Score: 34.57288003249214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nuclei segmentation is a fundamental prerequisite in the digital pathology
workflow. The development of automated methods for nuclei segmentation enables
quantitative analysis of the wide existence and large variances in nuclei
morphometry in histopathology images. However, manual annotation of tens of
thousands of nuclei is tedious and time-consuming, which requires significant
amount of human effort and domain-specific expertise. To alleviate this
problem, in this paper, we propose a weakly-supervised nuclei segmentation
method that only requires partial point labels of nuclei. Specifically, we
propose a novel boundary mining framework for nuclei segmentation, named BoNuS,
which simultaneously learns nuclei interior and boundary information from the
point labels. To achieve this goal, we propose a novel boundary mining loss,
which guides the model to learn the boundary information by exploring the
pairwise pixel affinity in a multiple-instance learning manner. Then, we
consider a more challenging problem, i.e., partial point label, where we
propose a nuclei detection module with curriculum learning to detect the
missing nuclei with prior morphological knowledge. The proposed method is
validated on three public datasets, MoNuSeg, CPM, and CoNIC datasets.
Experimental results demonstrate the superior performance of our method to the
state-of-the-art weakly-supervised nuclei segmentation methods. Code:
https://github.com/hust-linyi/bonus.
Related papers
- Enhancing Nucleus Segmentation with HARU-Net: A Hybrid Attention Based
Residual U-Blocks Network [9.718765096478371]
Current methods for nucleus segmentation rely on nuclear morphology or contour-based approaches.
We propose a dual-branch network using hybrid attention based residual U-blocks for nucleus instance segmentation.
Within the network, we propose a context fusion block (CF-block) that effectively extracts and merges contextual information from the network.
arXiv Detail & Related papers (2023-08-07T08:03:20Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
Most neural network based methods are affected by the local receptive field of convolutions.
We propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order.
Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations.
arXiv Detail & Related papers (2023-02-22T14:52:06Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
Deep neural networks have been widely applied in nuclei instance segmentation of H&E stained pathology images.
It is inefficient and unnecessary to label all pixels for a dataset of nuclei images which usually contain similar and redundant patterns.
We propose a novel full nuclei segmentation framework that chooses only a few image patches to be annotated, augments the training set from the selected samples, and achieves nuclei segmentation in a semi-supervised manner.
arXiv Detail & Related papers (2022-12-20T14:53:26Z) - CoNIC: Colon Nuclei Identification and Counting Challenge 2022 [5.23834975053771]
We organise the Colon Nuclei Identification and Counting (CoNIC) Challenge.
It encourages researchers to develop algorithms that perform segmentation, classification and counting of nuclei.
As part of this challenge we will also test the sensitivity of each submitted algorithm to certain input variations.
arXiv Detail & Related papers (2021-11-29T12:06:47Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
We study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin stained histopathology data.
We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types.
arXiv Detail & Related papers (2021-11-01T08:29:40Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
We propose a novel multitask learning network with a bending loss regularizer to separate overlapped nuclei accurately.
The newly proposed multitask learning architecture enhances the generalization by learning shared representation from three tasks.
The proposed bending loss defines high penalties to concave contour points with large curvatures, and applies small penalties to convex contour points with small curvatures.
arXiv Detail & Related papers (2021-09-30T17:29:44Z) - Instance-aware Self-supervised Learning for Nuclei Segmentation [47.07869311690419]
We propose a novel self-supervised learning framework to exploit the capacity of convolutional neural networks (CNNs) on the nuclei instance segmentation task.
The proposed approach involves two sub-tasks, which enable neural networks to implicitly leverage the prior-knowledge of nuclei size and quantity.
Experimental results on the publicly available MoNuSeg dataset show that the proposed self-supervised learning approach can remarkably boost the segmentation accuracy of nuclei instance.
arXiv Detail & Related papers (2020-07-22T03:37:14Z) - Self-Supervised Nuclei Segmentation in Histopathological Images Using
Attention [6.3039500405009665]
We present a self-supervised approach for segmentation of nuclei for whole slide histopathology images.
Our method works on the assumption that the size and texture of nuclei can determine the magnification at which a patch is extracted.
Our experiments show that with standard post-processing, our method can outperform other unsupervised nuclei segmentation approaches.
arXiv Detail & Related papers (2020-07-16T14:49:20Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - Bending Loss Regularized Network for Nuclei Segmentation in
Histopathology Images [69.74667930907314]
We propose a bending loss regularized network for nuclei segmentation.
The proposed bending loss defines high penalties to contour points with large curvatures, and applies small penalties to contour points with small curvature.
Minimizing the bending loss can avoid generating contours that encompass multiple nuclei.
arXiv Detail & Related papers (2020-02-03T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.