Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- URL: http://arxiv.org/abs/2401.07494v4
- Date: Fri, 17 May 2024 06:26:10 GMT
- Title: Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- Authors: Zihao Wang, Zhe Wu,
- Abstract summary: We develop a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks.
This model is explicitly designed for fast and robust optimization-based tasks.
We have successfully implemented this model in various practical engineering applications.
- Score: 14.835081385422653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational efficiency and non-adversarial robustness are critical factors in process modeling and optimization for real-world engineering applications. Yet, conventional neural networks often fall short in addressing both simultaneously, or even separately. Drawing insights from natural physical systems and existing literature, it is known theoretically that an input convex architecture will enhance computational efficiency, while a Lipschitz-constrained architecture will bolster non-adversarial robustness. However, integrating both properties into one model is a nontrivial task, as enforcing one property may compromise the other one. Therefore, in this work, we develop a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks, that inherits the strengths of both convexity and Lipschitz continuity. This model is explicitly designed for fast and robust optimization-based tasks, which outperforms existing recurrent units in terms of computational efficiency and non-adversarial robustness. Additionally, we have successfully implemented this model in various practical engineering applications, such as optimization of chemical processes and real-world solar irradiance prediction for Solar PV system planning at LHT Holdings in Singapore. Source code is available at https://github.com/killingbear999/ICLRNN.
Related papers
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)
The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Parallel Spiking Unit for Efficient Training of Spiking Neural Networks [8.912926151352888]
Spiking Neural Networks (SNNs) are used to advance artificial intelligence.
SNNs are hampered by their inherent sequential computational dependency.
This paper introduces the innovative Parallel Spiking Unit (PSU) and its two derivatives, the Input-aware PSU (IPSU) and Reset-aware PSU (RPSU)
These variants skillfully decouple the leaky integration and firing mechanisms in spiking neurons while probabilistically managing the reset process.
arXiv Detail & Related papers (2024-02-01T09:36:26Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
We propose a novel model architecture that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.
We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers.
arXiv Detail & Related papers (2023-05-22T13:57:41Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Complexity-Driven CNN Compression for Resource-constrained Edge AI [1.6114012813668934]
We propose a novel and computationally efficient pruning pipeline by exploiting the inherent layer-level complexities of CNNs.
We define three modes of pruning, namely parameter-aware (PA), FLOPs-aware (FA), and memory-aware (MA), to introduce versatile compression of CNNs.
arXiv Detail & Related papers (2022-08-26T16:01:23Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREA is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures.
Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design.
arXiv Detail & Related papers (2022-06-17T11:16:28Z) - Towards Optimal VPU Compiler Cost Modeling by using Neural Networks to
Infer Hardware Performances [58.720142291102135]
'VPUNN' is a neural network-based cost model trained on low-level task profiling.
It consistently outperforms the state-of-the-art cost modeling in Intel's line of VPU processors.
arXiv Detail & Related papers (2022-05-09T22:48:39Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Near-Optimal Hardware Design for Convolutional Neural Networks [0.0]
This study proposes a novel, special-purpose, and high-efficiency hardware architecture for convolutional neural networks.
The proposed architecture maximizes the utilization of multipliers by designing the computational circuit with the same structure as that of the computational flow of the model.
An implementation based on the proposed hardware architecture has been applied in commercial AI products.
arXiv Detail & Related papers (2020-02-06T09:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.