Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- URL: http://arxiv.org/abs/2401.07494v4
- Date: Fri, 17 May 2024 06:26:10 GMT
- Title: Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- Authors: Zihao Wang, Zhe Wu,
- Abstract summary: We develop a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks.
This model is explicitly designed for fast and robust optimization-based tasks.
We have successfully implemented this model in various practical engineering applications.
- Score: 14.835081385422653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational efficiency and non-adversarial robustness are critical factors in process modeling and optimization for real-world engineering applications. Yet, conventional neural networks often fall short in addressing both simultaneously, or even separately. Drawing insights from natural physical systems and existing literature, it is known theoretically that an input convex architecture will enhance computational efficiency, while a Lipschitz-constrained architecture will bolster non-adversarial robustness. However, integrating both properties into one model is a nontrivial task, as enforcing one property may compromise the other one. Therefore, in this work, we develop a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks, that inherits the strengths of both convexity and Lipschitz continuity. This model is explicitly designed for fast and robust optimization-based tasks, which outperforms existing recurrent units in terms of computational efficiency and non-adversarial robustness. Additionally, we have successfully implemented this model in various practical engineering applications, such as optimization of chemical processes and real-world solar irradiance prediction for Solar PV system planning at LHT Holdings in Singapore. Source code is available at https://github.com/killingbear999/ICLRNN.
Related papers
- Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity [39.483346492111515]
Linear recurrent neural networks enable powerful long-range sequence modeling with constant memory usage and time-per-token during inference.
Unstructured sparsity offers a compelling solution, enabling substantial reductions in compute and memory requirements when accelerated by compatible hardware platforms.
We find that highly sparse linear RNNs consistently achieve better efficiency-performance trade-offs than dense baselines.
arXiv Detail & Related papers (2025-02-03T13:09:21Z) - Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML.
This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model.
A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA.
arXiv Detail & Related papers (2024-11-03T16:42:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural
Networks [0.08965418284317034]
Spiking Neural Networks (SNNs) offer to enhance energy efficiency through a reduced and low-power hardware footprint.
This paper introduces Spyx, a new and lightweight SNN simulation and optimization library designed in JAX.
arXiv Detail & Related papers (2024-02-29T09:46:44Z) - Parallel Spiking Unit for Efficient Training of Spiking Neural Networks [8.912926151352888]
Spiking Neural Networks (SNNs) are used to advance artificial intelligence.
SNNs are hampered by their inherent sequential computational dependency.
This paper introduces the innovative Parallel Spiking Unit (PSU) and its two derivatives, the Input-aware PSU (IPSU) and Reset-aware PSU (RPSU)
These variants skillfully decouple the leaky integration and firing mechanisms in spiking neurons while probabilistically managing the reset process.
arXiv Detail & Related papers (2024-02-01T09:36:26Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
Certified robustness is a desirable property for deep neural networks in safety-critical applications.
We show that our method consistently outperforms state-of-the-art methods on MNIST and TinyNet datasets.
arXiv Detail & Related papers (2021-11-02T06:44:10Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
We propose a new power-and-area-efficient architecture for implementing Articial Neural Networks (ANNs) in hardware.
For the first time, a fully-parallel CNN as LENET-5 is embedded and tested in a single FPGA.
arXiv Detail & Related papers (2020-06-22T17:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.