SIG: Efficient Self-Interpretable Graph Neural Network for Continuous-time Dynamic Graphs
- URL: http://arxiv.org/abs/2405.19062v1
- Date: Wed, 29 May 2024 13:09:33 GMT
- Title: SIG: Efficient Self-Interpretable Graph Neural Network for Continuous-time Dynamic Graphs
- Authors: Lanting Fang, Yulian Yang, Kai Wang, Shanshan Feng, Kaiyu Feng, Jie Gui, Shuliang Wang, Yew-Soon Ong,
- Abstract summary: We aim to predict future links within the dynamic graph while simultaneously providing causal explanations for these predictions.
To tackle these challenges, we propose a novel causal inference model, namely the Independent and Confounded Causal Model (ICCM)
Our proposed model significantly outperforms existing methods across link prediction accuracy, explanation quality, and robustness to shortcut features.
- Score: 34.269958289295516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While dynamic graph neural networks have shown promise in various applications, explaining their predictions on continuous-time dynamic graphs (CTDGs) is difficult. This paper investigates a new research task: self-interpretable GNNs for CTDGs. We aim to predict future links within the dynamic graph while simultaneously providing causal explanations for these predictions. There are two key challenges: (1) capturing the underlying structural and temporal information that remains consistent across both independent and identically distributed (IID) and out-of-distribution (OOD) data, and (2) efficiently generating high-quality link prediction results and explanations. To tackle these challenges, we propose a novel causal inference model, namely the Independent and Confounded Causal Model (ICCM). ICCM is then integrated into a deep learning architecture that considers both effectiveness and efficiency. Extensive experiments demonstrate that our proposed model significantly outperforms existing methods across link prediction accuracy, explanation quality, and robustness to shortcut features. Our code and datasets are anonymously released at https://github.com/2024SIG/SIG.
Related papers
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Temporal Link Prediction Using Graph Embedding Dynamics [0.0]
Temporal link prediction in dynamic networks is of particular interest due to its potential for solving complex scientific and real-world problems.
Traditional approaches to temporal link prediction have focused on finding the aggregation of dynamics of the network as a unified output.
We propose a novel perspective on temporal link prediction by defining nodes as Newtonian objects and incorporating the concept of velocity to predict network dynamics.
arXiv Detail & Related papers (2024-01-15T07:35:29Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
We present DyExplainer, a novel approach to explaining dynamic Graph Neural Networks (GNNs) on the fly.
DyExplainer trains a dynamic GNN backbone to extract representations of the graph at each snapshot.
We also augment our approach with contrastive learning techniques to provide priori-guided regularization.
arXiv Detail & Related papers (2023-10-25T05:26:33Z) - DURENDAL: Graph deep learning framework for temporal heterogeneous
networks [0.5156484100374057]
Temporal heterogeneous networks (THNs) are evolving networks that characterize many real-world applications.
We propose DURENDAL, a graph deep learning framework for THNs.
arXiv Detail & Related papers (2023-09-30T10:46:01Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
We develop dynamic effective connectivity estimation via neural network training (DECENNT)
DECENNT outperforms state-of-the-art (SOTA) methods on five different tasks and infers interpretable task-specific dynamic graphs.
arXiv Detail & Related papers (2022-02-04T21:14:21Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.