Multifractal-spectral features enhance classification of anomalous
diffusion
- URL: http://arxiv.org/abs/2401.07646v1
- Date: Mon, 15 Jan 2024 12:42:15 GMT
- Title: Multifractal-spectral features enhance classification of anomalous
diffusion
- Authors: Henrik Seckler, Ralf Metzler, Damian G. Kelty-Stephen, Madhur Mangalam
- Abstract summary: Anomalous diffusion processes pose a unique challenge in classification and characterization.
The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories.
Our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing classification of anomalous diffusion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomalous diffusion processes pose a unique challenge in classification and
characterization. Previously (Mangalam et al., 2023, Physical Review Research
5, 023144), we established a framework for understanding anomalous diffusion
using multifractal formalism. The present study delves into the potential of
multifractal spectral features for effectively distinguishing anomalous
diffusion trajectories from five widely used models: fractional Brownian
motion, scaled Brownian motion, continuous time random walk, annealed transient
time motion, and L\'evy walk. To accomplish this, we generate extensive
datasets comprising $10^6$ trajectories from these five anomalous diffusion
models and extract multiple multifractal spectra from each trajectory. Our
investigation entails a thorough analysis of neural network performance,
encompassing features derived from varying numbers of spectra. Furthermore, we
explore the integration of multifractal spectra into traditional feature
datasets, enabling us to assess their impact comprehensively. To ensure a
statistically meaningful comparison, we categorize features into concept groups
and train neural networks using features from each designated group. Notably,
several feature groups demonstrate similar levels of accuracy, with the highest
performance observed in groups utilizing moving-window characteristics and
$p$-variation features. Multifractal spectral features, particularly those
derived from three spectra involving different timescales and cutoffs, closely
follow, highlighting their robust discriminatory potential. Remarkably, a
neural network exclusively trained on features from a single multifractal
spectrum exhibits commendable performance, surpassing other feature groups. Our
findings underscore the diverse and potent efficacy of multifractal spectral
features in enhancing classification of anomalous diffusion.
Related papers
- Point-Calibrated Spectral Neural Operators [54.13671100638092]
We introduce Point-Calibrated Spectral Transform, which learns operator mappings by approximating functions with the point-level adaptive spectral basis.
Point-Calibrated Spectral Neural Operators learn operator mappings by approximating functions with the point-level adaptive spectral basis.
arXiv Detail & Related papers (2024-10-15T08:19:39Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - DiffUCD:Unsupervised Hyperspectral Image Change Detection with Semantic
Correlation Diffusion Model [46.68717345017946]
Hyperspectral image change detection (HSI-CD) has emerged as a crucial research area in remote sensing.
We propose a novel unsupervised HSI-CD with semantic correlation diffusion model (DiffUCD)
Our method can achieve comparable results to those fully supervised methods requiring numerous samples.
arXiv Detail & Related papers (2023-05-21T09:21:41Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Multi-Temporal Spatial-Spectral Comparison Network for Hyperspectral
Anomalous Change Detection [32.23764287942984]
We have proposed a Multi-Temporal spatial-spectral Comparison Network for hyperspectral anomalous change detection (MTC-NET)
The whole model is a deep siamese network, aiming at learning the prevalent spectral difference resulting from the complex imaging conditions from the hyperspectral images by contrastive learning.
The experiments on the "Viareggio 2013" datasets demonstrate the effectiveness of proposed MTC-NET.
arXiv Detail & Related papers (2022-05-23T15:41:27Z) - On the Frequency Bias of Generative Models [61.60834513380388]
We analyze proposed measures against high-frequency artifacts in state-of-the-art GAN training.
We find that none of the existing approaches can fully resolve spectral artifacts yet.
Our results suggest that there is great potential in improving the discriminator.
arXiv Detail & Related papers (2021-11-03T18:12:11Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
This paper proposes a new network structure for unsupervised deep representation learning based on spectral analysis.
It can identify the local similarities among images in patch level and thus more robust against occlusion.
It can learn more clustering-friendly representations and is capable to reveal the deep correlations among data samples.
arXiv Detail & Related papers (2020-09-11T05:07:15Z) - Differentiable Programming for Hyperspectral Unmixing using a
Physics-based Dispersion Model [9.96234892716562]
In this paper, spectral variation is considered from a physics-based approach and incorporated into an end-to-end spectral unmixing algorithm.
A technique for inverse rendering using a convolutional neural network is introduced to enhance performance and speed when training data is available.
Results achieve state-of-the-art on both infrared and visible-to-near-infrared (VNIR) datasets.
arXiv Detail & Related papers (2020-07-12T14:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.