Prospects for Mitigating Spectral Variability in Tropical Species Classification Using Self-Supervised Learning
- URL: http://arxiv.org/abs/2503.12973v1
- Date: Mon, 17 Mar 2025 09:32:47 GMT
- Title: Prospects for Mitigating Spectral Variability in Tropical Species Classification Using Self-Supervised Learning
- Authors: Colin Prieur, Nassim Ait Ali Braham, Paul Tresson, Grégoire Vincent, Jocelyn Chanussot,
- Abstract summary: This paper proposes using Self-Supervised Learning (SSL) to encode spectral features that are robust to abiotic variability and relevant for species identification.<n>For the classification of 40 tropical species, experiments show that these features can outperform typical reflectance products in terms of robustness to spectral variability by 10 points of accuracy across dates.
- Score: 14.890166467453867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Airborne hyperspectral imaging is a promising method for identifying tropical species, but spectral variability between acquisitions hinders consistent results. This paper proposes using Self-Supervised Learning (SSL) to encode spectral features that are robust to abiotic variability and relevant for species identification. By employing the state-of-the-art Barlow-Twins approach on repeated spectral acquisitions, we demonstrate the ability to develop stable features. For the classification of 40 tropical species, experiments show that these features can outperform typical reflectance products in terms of robustness to spectral variability by 10 points of accuracy across dates.
Related papers
- DiffRaman: A Conditional Latent Denoising Diffusion Probabilistic Model for Bacterial Raman Spectroscopy Identification Under Limited Data Conditions [11.586869210490628]
This paper proposes a data generation method utilizing deep generative models to expand the data volume and enhance the recognition accuracy of bacterial Raman spectra.<n> Experimental results demonstrate that synthetic bacterial Raman spectra generated by DiffRaman can effectively emulate real experimental spectra.
arXiv Detail & Related papers (2024-12-11T06:36:55Z) - Point-Calibrated Spectral Neural Operators [54.13671100638092]
We introduce Point-Calibrated Spectral Transform, which learns operator mappings by approximating functions with the point-level adaptive spectral basis.
Point-Calibrated Spectral Neural Operators learn operator mappings by approximating functions with the point-level adaptive spectral basis.
arXiv Detail & Related papers (2024-10-15T08:19:39Z) - Multifractal-spectral features enhance classification of anomalous
diffusion [0.0]
Anomalous diffusion processes pose a unique challenge in classification and characterization.
The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories.
Our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing classification of anomalous diffusion.
arXiv Detail & Related papers (2024-01-15T12:42:15Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - DiffUCD:Unsupervised Hyperspectral Image Change Detection with Semantic
Correlation Diffusion Model [46.68717345017946]
Hyperspectral image change detection (HSI-CD) has emerged as a crucial research area in remote sensing.
We propose a novel unsupervised HSI-CD with semantic correlation diffusion model (DiffUCD)
Our method can achieve comparable results to those fully supervised methods requiring numerous samples.
arXiv Detail & Related papers (2023-05-21T09:21:41Z) - SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models [18.391049303136715]
We propose a generative framework for HSI classification with diffusion models (SpectralDiff)
SpectralDiff effectively mines the distribution information of high-dimensional and highly redundant data.
Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-12T16:32:34Z) - Improving GANs for Long-Tailed Data through Group Spectral
Regularization [51.58250647277375]
We propose a novel group Spectral Regularizer (gSR) that prevents the spectral explosion alleviating mode collapse.
We find that gSR effectively combines with existing augmentation and regularization techniques, leading to state-of-the-art image generation performance on long-tailed data.
arXiv Detail & Related papers (2022-08-21T17:51:05Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
Inverse design of short single-stranded RNA and DNA sequences (aptamers) is the task of finding sequences that satisfy a set of desired criteria.
We propose to use an unsupervised machine learning model known as the Potts model to discover new, useful sequences with controllable sequence diversity.
arXiv Detail & Related papers (2022-08-10T13:30:58Z) - Spectral Variability Augmented Sparse Unmixing of Hyperspectral Images [20.703976519242094]
A spectral variability augmented sparse unmixing model (SVASU) is proposed, in which the spectral variability is extracted explicitly.
It is noted that the spectral variability library and the intrinsic spectral library are all constructed from the In-situ observed image.
Experimental results over both synthetic and real-world data sets demonstrate that the augmented decomposition by spectral variability significantly improves the unmixing performance.
arXiv Detail & Related papers (2021-10-19T05:25:30Z) - Cross-Spectral Periocular Recognition with Conditional Adversarial
Networks [59.17685450892182]
We propose Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra.
We obtain a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.
arXiv Detail & Related papers (2020-08-26T15:02:04Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
This paper defines the variation predictability of latent disentangled representations.
Within an adversarial generation process, we encourage variation predictability by maximizing the mutual information between latent variations and corresponding image pairs.
We develop an evaluation metric that does not rely on the ground-truth generative factors to measure the disentanglement of latent representations.
arXiv Detail & Related papers (2020-07-25T08:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.