論文の概要: Empirical Evidence for the Fragment level Understanding on Drug
Molecular Structure of LLMs
- arxiv url: http://arxiv.org/abs/2401.07657v1
- Date: Mon, 15 Jan 2024 12:53:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 17:11:23.609004
- Title: Empirical Evidence for the Fragment level Understanding on Drug
Molecular Structure of LLMs
- Title(参考訳): LLMの薬物分子構造におけるフラグメントレベル理解の実証的証拠
- Authors: Xiuyuan Hu, Guoqing Liu, Yang Zhao, Hao Zhang
- Abstract要約: 言語モデルが1次元配列から化学空間構造をどう理解するかについて検討する。
その結果,分子断片の観点から,言語モデルで化学構造が理解できることが示唆された。
- 参考スコア(独自算出の注目度): 16.508471997999496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI for drug discovery has been a research hotspot in recent years, and
SMILES-based language models has been increasingly applied in drug molecular
design. However, no work has explored whether and how language models
understand the chemical spatial structure from 1D sequences. In this work, we
pre-train a transformer model on chemical language and fine-tune it toward drug
design objectives, and investigate the correspondence between high-frequency
SMILES substrings and molecular fragments. The results indicate that language
models can understand chemical structures from the perspective of molecular
fragments, and the structural knowledge learned through fine-tuning is
reflected in the high-frequency SMILES substrings generated by the model.
- Abstract(参考訳): 近年、薬物発見のためのAIは研究のホットスポットとなり、SMILESベースの言語モデルは、薬物分子設計にますます応用されている。
しかし、言語モデルが1次元配列から化学空間構造をどう理解するかについては研究されていない。
本研究では, 化学言語上でのトランスフォーマーモデルを事前学習し, 薬物設計目的に向けて微調整し, 高周波SMILESサブストリングと分子フラグメントの対応について検討する。
その結果, 言語モデルは分子断片の観点から化学構造を理解でき, 微調整によって得られた構造知識は, モデルが生成する高周波スマイル部分弦に反映されることがわかった。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された基礎モデルである。
MoleculeNetデータセット上でFARMを厳格に評価し、12タスク中10タスクで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction [14.353313239109337]
MolTRESは化学言語表現学習フレームワークである。
ジェネレータと識別器のトレーニングが組み込まれており、より難しい例からモデルを学習することができる。
我々のモデルは、一般的な分子特性予測タスクにおける既存の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2024-07-09T01:14:28Z) - DrugLLM: Open Large Language Model for Few-shot Molecule Generation [20.680942401843772]
DrugLLMは、過去の修飾に基づいて次の分子を予測することで、薬物発見における分子の修飾方法を学ぶ。
計算実験では、限られた例に基づいて期待された特性を持つ新しい分子を生成することができる。
論文 参考訳(メタデータ) (2024-05-07T09:18:13Z) - From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning [10.025809630976065]
本稿では,より堅牢で一般化可能な化学知識を学習する,新しい事前学習フレームワークを提案する。
提案手法は,種々の分子特性ベンチマークにおける競合性能を示す。
論文 参考訳(メタデータ) (2023-11-05T23:47:52Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
対象分子を記述・編集するための自然言語を用いた対話型分子設計を提案する。
この課題をより良くするために、実験プロパティ情報を注入することによって強化された知識的で汎用的な生成事前学習モデルChatMolを設計する。
論文 参考訳(メタデータ) (2023-06-21T02:05:48Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
分子グラフ構造アンダーラインCo設計のための機械学習ベースの生成フレームワークであるMollCodeを提案する。
MolCodeでは、3D幾何情報によって分子2Dグラフの生成が促進され、それによって分子3D構造の予測が導かれる。
分子設計における2次元トポロジーと3次元幾何は本質的に相補的な情報を含んでいることが明らかとなった。
論文 参考訳(メタデータ) (2023-04-12T13:34:22Z) - Difficulty in chirality recognition for Transformer architectures
learning chemical structures from string [0.0]
SMILESの学習過程と化学構造との関係を代表的NLPモデルであるTransformerを用いて検討した。
トランスフォーマーは分子の部分構造を高速に学習するが、全体構造を理解するには拡張トレーニングが必要である。
論文 参考訳(メタデータ) (2023-03-21T04:47:45Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
分子モデリングのためのSMILES表現を用いた潜時空間エネルギーに基づく先行モデルについて学習する。
本手法は,最先端モデルと競合する妥当性と特異性を持つ分子を生成することができる。
論文 参考訳(メタデータ) (2020-10-19T09:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。