Multifractality of Many-Body Non-Hermitian Skin Effect
- URL: http://arxiv.org/abs/2401.08304v2
- Date: Mon, 04 Nov 2024 07:41:21 GMT
- Title: Multifractality of Many-Body Non-Hermitian Skin Effect
- Authors: Shu Hamanaka, Kohei Kawabata,
- Abstract summary: The non-Hermitian skin effect, anomalous localization of an extensive number of eigenstates induced by nonreciprocal dissipation, plays a pivotal role in non-Hermitian topology.
Here, we elucidate that the skin effect manifests itself as multifractality in the many-body Hilbert space.
Our work establishes a defining characterization of the non-Hermitian skin effect and uncovers a fundamental relationship between multifractality and ergodicity in open quantum many-body systems.
- Score: 0.0
- License:
- Abstract: The non-Hermitian skin effect, anomalous localization of an extensive number of eigenstates induced by nonreciprocal dissipation, plays a pivotal role in non-Hermitian topology and significantly influences the open quantum dynamics. However, its genuinely quantum characterization in many-body systems has yet to be developed. Here, we elucidate that the skin effect manifests itself as multifractality in the many-body Hilbert space. This multifractality does not accompany the single-particle skin effect and hence is intrinsic to the many-body skin effect. Furthermore, we demonstrate that the many-body skin effect coexists with spectral statistics of random matrices, in contrast to multifractality associated with the many-body localization, which necessitates the absence of ergodicity. We also illustrate multifractality caused by the Liouvillian skin effect in Markovian open quantum systems. Our work establishes a defining characterization of the non-Hermitian skin effect and uncovers a fundamental relationship between multifractality and ergodicity in open quantum many-body systems.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Incoherent non-Hermitian skin effect in photonic quantum walks [0.0]
The non-Hermitian skin effect describes the concentration of an extensive number of eigenstates near the boundaries of certain dissipative systems.
Here we push the concept of skin effect into the fully incoherent regime and show that rather generally (but not universally) the non-Hermitian skin effect persists under dephasing dynamics.
arXiv Detail & Related papers (2024-04-06T07:30:35Z) - Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Enhanced many-body quantum scars from the non-Hermitian Fock skin effect [3.3492229306776777]
We show that the so-called skin effect originating from non-Hermitian pumping can manifest as dynamical amplification within the Fock space.
We propose an experimental realization of the non-Hermitian scar enhancement in a tilted Bose-Hubbard optical lattice with laser-induced loss.
Our results show that the Fock skin effect provides a powerful tool for creating robust non-ergodic states in generic open quantum systems.
arXiv Detail & Related papers (2024-03-04T19:00:04Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Non-Hermitian Mott Skin Effect [0.0]
We propose a novel type of skin effects in non-Hermitian quantum many-body systems.
This phenomenon is induced by the interplay between strong correlations and the non-Hermitian point-gap topology.
arXiv Detail & Related papers (2023-09-25T13:10:07Z) - Collective non-Hermitian skin effect: Point-gap topology and the
doublon-holon excitations in non-reciprocal many-body systems [1.565361244756411]
Non-Hermitian skin effect, macroscopic collapse of bulk states to the boundary, has been extensively studied in various experimental platforms.
Previous studies have shown that the Pauli exclusion principle suppresses the skin effect.
We present a compelling counterexample by demonstrating the presence of the skin effect in doublon-holon excitations.
arXiv Detail & Related papers (2023-09-14T17:43:16Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect [0.0]
We show that the skin effect induces a nonequilibrium quantum phase transition in the entanglement dynamics.
We also show that the skin effect leads to the purification and the reduction of von Neumann entropy even in Markovian open quantum systems.
arXiv Detail & Related papers (2022-06-11T00:27:36Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.