論文の概要: Faster ISNet for Background Bias Mitigation on Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2401.08409v2
- Date: Sun, 31 Mar 2024 19:01:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 14:25:45.409736
- Title: Faster ISNet for Background Bias Mitigation on Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークによるバックグラウンドバイアス軽減のための高速ISNet
- Authors: Pedro R. A. S. Bassi, Sergio Decherchi, Andrea Cavalli,
- Abstract要約: 画像背景のバイアスや刺激的な相関はニューラルネットワークに影響を与え、ショートカット学習を引き起こし、現実世界のデータへの一般化を妨げる。
本稿では,この数からトレーニング時間が独立したアーキテクチャを提案する。
我々は、合成背景バイアスと、一般的に背景バイアスを示すアプリケーションである胸部X線における新型コロナウイルス検出を用いて、提案したアーキテクチャに挑戦する。
- 参考スコア(独自算出の注目度): 0.4915744683251149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original model cannot feasibly handle.
- Abstract(参考訳): 画像背景のバイアスや刺激的な相関はニューラルネットワークに影響を与え、ショートカット学習(クリーバーハンス効果)を引き起こし、現実世界のデータへの一般化を妨げる。
最近導入されたアーキテクチャであるISNetは、深い分類器に対する背景の影響を軽減するために、レイヤワイズ関連伝播(LRP、説明手法)ヒートマップの最適化を提案した。
しかし、ISNetのトレーニング時間はアプリケーション内のクラス数と線形にスケールする。
本稿では,この数からトレーニング時間が独立したアーキテクチャを提案する。
さらに,簡潔かつモデルに依存しないLRP実装を提案する。
我々は、合成背景バイアスと、一般的に背景バイアスを示すアプリケーションである胸部X線における新型コロナウイルス検出を用いて、提案したアーキテクチャに挑戦する。
ネットワークはバックグラウンドの注意とショートカット学習を妨げ、アウト・オブ・ディストリビューションテストデータセット上の複数の最先端モデルを上回った。
提案したアーキテクチャでは、ISNetによるトレーニング速度の大幅な改善を反映して、LRP最適化を元のモデルでは対応できないような、多数のアプリケーションに導入している。
関連論文リスト
- Visual Prompting Upgrades Neural Network Sparsification: A Data-Model
Perspective [67.25782152459851]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Improving deep neural network generalization and robustness to
background bias via layer-wise relevance propagation optimization [0.0]
画像の背景の特徴は、背景バイアスを表す画像のクラスと飛躍的に相関する。
標準的な評価データセットでうまく機能するが、現実のデータにはあまり一般化しないディープニューラルネットワーク(DNN)。
本研究では, LRPヒートマップの最適化により, 背景バイアスの影響を最小限に抑えることができることを示す。
論文 参考訳(メタデータ) (2022-02-01T05:58:01Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - An optimised deep spiking neural network architecture without gradients [7.183775638408429]
本稿では、局所シナプスおよびしきい値適応ルールを用いたエンドツーエンドのトレーニング可能なモジュラーイベント駆動ニューラルアーキテクチャを提案する。
このアーキテクチャは、既存のスパイキングニューラルネットワーク(SNN)アーキテクチャの高度に抽象化されたモデルを表している。
論文 参考訳(メタデータ) (2021-09-27T05:59:12Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
本稿では,イベントベース光フロー推定のためのニューラルネットアーキテクチャを提案する。
このネットワークは、Multi-Vehicle Stereo Event Cameraデータセット上で、セルフ教師付き学習でエンドツーエンドにトレーニングされている。
既存の最先端の手法を大きなマージンで上回る結果が得られた。
論文 参考訳(メタデータ) (2021-09-10T13:37:37Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
本稿では,ロバスト主成分分析(RPCA)問題に対するディープアンフォールディングに基づくネットワーク設計を提案する。
既存の設計とは異なり,本手法は連続するビデオフレームのスパース表現間の時間的相関をモデル化することに焦点を当てている。
移動MNISTデータセットを用いた実験により、提案したネットワークは、ビデオフォアグラウンドとバックグラウンドの分離作業において、最近提案された最先端のRPCAネットワークより優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T11:40:09Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。