論文の概要: A Novel Approach in Solving Stochastic Generalized Linear Regression via
Nonconvex Programming
- arxiv url: http://arxiv.org/abs/2401.08488v1
- Date: Tue, 16 Jan 2024 16:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 19:00:21.033094
- Title: A Novel Approach in Solving Stochastic Generalized Linear Regression via
Nonconvex Programming
- Title(参考訳): 非凸プログラミングによる確率一般化線形回帰の解法
- Authors: Vu Duc Anh, Tran Anh Tuan, Tran Ngoc Thang, and Nguyen Thi Ngoc Anh
- Abstract要約: 本稿では,一般化線形回帰モデルについて,確率制約問題として考察する。
提案アルゴリズムの結果は,通常のロジスティック回帰モデルよりも1~2%以上よい結果を得た。
- 参考スコア(独自算出の注目度): 1.6874375111244329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized linear regressions, such as logistic regressions or Poisson
regressions, are long-studied regression analysis approaches, and their
applications are widely employed in various classification problems. Our study
considers a stochastic generalized linear regression model as a stochastic
problem with chance constraints and tackles it using nonconvex programming
techniques. Clustering techniques and quantile estimation are also used to
estimate random data's mean and variance-covariance matrix. Metrics for
measuring the performance of logistic regression are used to assess the model's
efficacy, including the F1 score, precision score, and recall score. The
results of the proposed algorithm were over 1 to 2 percent better than the
ordinary logistic regression model on the same dataset with the above
assessment criteria.
- Abstract(参考訳): ロジスティック回帰 (logistic regression) やポアソン回帰 (poisson regression) といった一般化線形回帰 (generally linear regressions) は、長期にわたって研究された回帰分析手法であり、それらの応用は様々な分類問題で広く用いられている。
本研究では,確率的一般化線形回帰モデルを確率的制約付き確率的問題とみなし,非凸プログラミング手法を用いてそれに取り組む。
クラスタリング手法と質的推定は、ランダムデータの平均と分散共分散行列の推定にも用いられる。
ロジスティック回帰(logistic regression)のパフォーマンスを測定するためのメトリクスは、f1スコア、精度スコア、リコールスコアなど、モデルの有効性を評価するために使用されます。
提案アルゴリズムの結果は, 上記の評価基準と同一データセット上の通常のロジスティック回帰モデルよりも1~2%以上優れていた。
関連論文リスト
- Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
本研究では,高次元ランダム効果線形モデルの枠組みにおけるメタラーニングについて考察する。
本研究では,データ次元がタスク毎のサンプル数に比例して大きくなる場合に,新しいテストタスクに対する予測リスクの正確な振る舞いを示す。
トレーニングタスクのデータに基づいて,逆回帰係数を推定する手法を提案し,解析する。
論文 参考訳(メタデータ) (2024-03-27T21:18:43Z) - Statistical Agnostic Regression: a machine learning method to validate regression models [0.0]
本稿では,MLに基づく線形回帰の統計的意義を評価する手法として,統計的回帰(Agnostic Regression, SAR)を提案する。
我々は、説明的(機能)変数と反応(ラベル)変数の間の集団に線形関係があることを結論付けるために、少なくとも1-etaの確率で十分な証拠が存在することを示すしきい値を定義する。
論文 参考訳(メタデータ) (2024-02-23T09:19:26Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Robust Regularized Low-Rank Matrix Models for Regression and
Classification [14.698622796774634]
本稿では,ランク制約,ベクトル正規化(疎性など),一般損失関数に基づく行列変分回帰モデルのフレームワークを提案する。
アルゴリズムは収束することが保証されており、アルゴリズムのすべての累積点が$O(sqrtn)$100の順序で推定誤差を持ち、最小値の精度をほぼ達成していることを示す。
論文 参考訳(メタデータ) (2022-05-14T18:03:48Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
モデルトレーニング中のデータ歪/バイアスに対処することで回帰分析の精度を向上させることを目的としている。
回帰分析のための勾配降下モデルトレーニングを最適化するために,変分集中損失再重み付け法(VILoss)を提案する。
論文 参考訳(メタデータ) (2021-09-14T10:22:21Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
我々は,各層で変数選択を行うマルチオミックロジスティック回帰に対する2段階のアプローチを実装した。
私たちのアプローチは、可能な限り多くの関連する予測子を選択することを目標とすべきです。
提案手法により,分子レベルでの心筋メタボリックシンドロームの特徴を同定することができる。
論文 参考訳(メタデータ) (2020-08-01T10:36:27Z) - Fast OSCAR and OWL Regression via Safe Screening Rules [97.28167655721766]
順序付き$L_1$ (OWL)正規化回帰は、高次元スパース学習のための新しい回帰分析である。
近勾配法はOWL回帰を解くための標準手法として用いられる。
未知の順序構造を持つ原始解の順序を探索することにより、OWL回帰の最初の安全なスクリーニングルールを提案する。
論文 参考訳(メタデータ) (2020-06-29T23:35:53Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。