MA2GCN: Multi Adjacency relationship Attention Graph Convolutional
Networks for Traffic Prediction using Trajectory data
- URL: http://arxiv.org/abs/2401.08727v2
- Date: Thu, 18 Jan 2024 05:25:22 GMT
- Title: MA2GCN: Multi Adjacency relationship Attention Graph Convolutional
Networks for Traffic Prediction using Trajectory data
- Authors: Zhengke Sun, Yuliang Ma
- Abstract summary: This paper proposes a new traffic congestion prediction model - Multi Adjacency relationship Attention Graph Convolutional Networks(MA2GCN)
It transformed vehicle trajectory data into graph structured data in grid form, and proposed a vehicle entry and exit matrix based on the mobility between different grids.
Compared with multiple baselines, our model achieved the best performance on Shanghai taxi GPS trajectory dataset.
- Score: 1.147374308875151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of traffic congestion not only causes a large amount of economic
losses, but also seriously endangers the urban environment. Predicting traffic
congestion has important practical significance. So far, most studies have been
based on historical data from sensors placed on different roads to predict
future traffic flow and speed, to analyze the traffic congestion conditions of
a certain road segment. However, due to the fixed position of sensors, it is
difficult to mine new information. On the other hand, vehicle trajectory data
is more flexible and can extract traffic information as needed. Therefore, we
proposed a new traffic congestion prediction model - Multi Adjacency
relationship Attention Graph Convolutional Networks(MA2GCN). This model
transformed vehicle trajectory data into graph structured data in grid form,
and proposed a vehicle entry and exit matrix based on the mobility between
different grids. At the same time, in order to improve the performance of the
model, this paper also built a new adaptive adjacency matrix generation method
and adjacency matrix attention module. This model mainly used gated temporal
convolution and graph convolution to extract temporal and spatial information,
respectively. Compared with multiple baselines, our model achieved the best
performance on Shanghai taxi GPS trajectory dataset. The code is available at
https://github.com/zachysun/Taxi_Traffic_Benchmark.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
Traditional traffic prediction methods rely on historical traffic data to predict traffic trends.
In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation.
We propose ChatTraffic, the first diffusion model for text-to-traffic generation.
arXiv Detail & Related papers (2024-03-08T04:19:56Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph [10.675666104503119]
We propose Fine-grained Deep Traffic Inference, as termedI.
We construct a fine-grained traffic graph based on traffic signals to model the inter-road relations.
We are the first to conduct the city-level fine-grained traffic prediction.
arXiv Detail & Related papers (2023-06-19T14:03:42Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Large-scale Analysis and Simulation of Traffic Flow using Markov Models [0.0]
A mathematically rigorous model that can be used for traffic analysis was proposed earlier by other researchers.
In this paper, a new parametrization is presented for this model by introducing the concept of two-dimensional stationary distribution.
We have run simulations in medium and large scales and both the model and estimation procedure, based on artificial and real datasets, have been proved satisfactory.
arXiv Detail & Related papers (2020-07-06T12:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.