The Floquet Fluxonium Molecule: Driving Down Dephasing in Coupled
Superconducting Qubits
- URL: http://arxiv.org/abs/2401.08762v2
- Date: Tue, 13 Feb 2024 03:22:11 GMT
- Title: The Floquet Fluxonium Molecule: Driving Down Dephasing in Coupled
Superconducting Qubits
- Authors: Matthew Thibodeau, Angela Kou, Bryan K. Clark
- Abstract summary: High-coherence qubits are necessary building blocks for quantum computers.
We propose a superconducting qubit architecture that uses a Floquet flux drive to modify the spectrum of a static fluxonium molecule.
Our results indicate that driven qubits are able to outperform some of their static counterparts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-coherence qubits, which can store and manipulate quantum states for long
times with low error rates, are necessary building blocks for quantum
computers. We propose a superconducting qubit architecture that uses a Floquet
flux drive to modify the spectrum of a static fluxonium molecule. The
computational eigenstates have two key properties: disjoint support to minimize
bit flips, along with first- and second-order insensitivity to flux noise
dephasing. The rates of the three main error types are estimated through
numerical simulations, with predicted coherence times of approximately 50 ms in
the computational subspace and erasure lifetimes of about 500 $\mu$s. We give a
protocol for high-fidelity single qubit rotation gates via additional flux
modulation on timescales of roughly 500 ns. Our results indicate that driven
qubits are able to outperform some of their static counterparts.
Related papers
- Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.
We present a design for a multi-chip module comprising one carrier chip and four qubit modules.
Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.
We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - Digitized counterdiabatic quantum critical dynamics [32.73124984242397]
We experimentally demonstrate that a digitized counterdiabatic quantum protocol reduces the number of topological defects created during a fast quench.
We utilize superconducting cloud-based quantum processors with up to 156 qubits.
arXiv Detail & Related papers (2025-02-20T23:43:04Z) - System Characterization of Dispersive Readout in Superconducting Qubits [37.940693612514984]
We introduce a single protocol to measure the dispersive shift, resonator linewidth, and drive power used in the dispersive readout of superconducting qubits.
We find that the resonator linewidth is poorly controlled with a factor of 2 between the maximum and minimum measured values.
We also introduce a protocol for measuring the readout system efficiency using the same power levels as are used in typical qubit readout.
arXiv Detail & Related papers (2024-02-01T08:15:16Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Mechanically Induced Correlated Errors on Superconducting Qubits with
Relaxation Times Exceeding 0.4 Milliseconds [0.0]
Superconducting qubits are one of the most advanced candidates to realize scalable and fault-tolerant quantum computing.
Here, we realize ultra-coherent superconducting transmon qubits based on niobium capacitor electrodes, with lifetimes exceeding 0.4 ms.
By employing a nearly quantum-limited readout chain based on a Josephson traveling wave amplifier, we are able to simultaneously record bit-flip errors occurring in a multiple-qubit device.
We find that a pulse tube mechanical shock causes nonequilibrium dynamics of the qubits, leading to correlated bit-flip errors as well as transitions outside of the computational state space.
arXiv Detail & Related papers (2023-05-04T06:55:41Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Engineering Dynamical Sweet Spots to Protect Qubits from 1/$f$ Noise [0.08388591755871733]
We develop a protocol for engineering dynamical sweet spots which reduce the susceptibility of a qubit to low-frequency noise.
Our work provides an intuitive tool to encode quantum information in robust, time-dependent states.
arXiv Detail & Related papers (2020-04-26T19:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.