論文の概要: Whispering Pixels: Exploiting Uninitialized Register Accesses in Modern GPUs
- arxiv url: http://arxiv.org/abs/2401.08881v1
- Date: Tue, 16 Jan 2024 23:36:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 12:27:42.439609
- Title: Whispering Pixels: Exploiting Uninitialized Register Accesses in Modern GPUs
- Title(参考訳): 最新のGPUで一意化されたレジスタアクセスを爆発させる「Whispering Pixels」
- Authors: Frederik Dermot Pustelnik, Xhani Marvin Saß, Jean-Pierre Seifert,
- Abstract要約: 我々は、Apple、NVIDIA、Qualcommの3つの主要ベンダーの製品に脆弱性があることを実証する。
この脆弱性は、不透明なスケジューリングとレジスタ再マッピングアルゴリズムのために、敵に固有の課題をもたらす。
我々は,畳み込みニューラルネットワーク(CNN)の中間データに対する情報漏洩攻撃を実装し,大規模言語モデル(LLM)の出力を漏洩・再構成する攻撃能力を示す。
- 参考スコア(独自算出の注目度): 6.1255640691846285
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graphic Processing Units (GPUs) have transcended their traditional use-case of rendering graphics and nowadays also serve as a powerful platform for accelerating ubiquitous, non-graphical rendering tasks. One prominent task is inference of neural networks, which process vast amounts of personal data, such as audio, text or images. Thus, GPUs became integral components for handling vast amounts of potentially confidential data, which has awakened the interest of security researchers. This lead to the discovery of various vulnerabilities in GPUs in recent years. In this paper, we uncover yet another vulnerability class in GPUs: We found that some GPU implementations lack proper register initialization routines before shader execution, leading to unintended register content leakage of previously executed shader kernels. We showcase the existence of the aforementioned vulnerability on products of 3 major vendors - Apple, NVIDIA and Qualcomm. The vulnerability poses unique challenges to an adversary due to opaque scheduling and register remapping algorithms present in the GPU firmware, complicating the reconstruction of leaked data. In order to illustrate the real-world impact of this flaw, we showcase how these challenges can be solved for attacking various workloads on the GPU. First, we showcase how uninitialized registers leak arbitrary pixel data processed by fragment shaders. We further implement information leakage attacks on intermediate data of Convolutional Neural Networks (CNNs) and present the attack's capability to leak and reconstruct the output of Large Language Models (LLMs).
- Abstract(参考訳): グラフィック処理ユニット(GPU)は、従来のレンダリンググラフィックスのユースケースを超越し、今日ではユビキタスで非グラフィックレンダリングタスクを加速するための強力なプラットフォームとしても機能している。
注目すべき課題のひとつは、音声、テキスト、画像などの膨大な個人情報を処理するニューラルネットワークの推論である。
これにより、GPUは膨大な量の潜在的機密データを処理するための重要なコンポーネントとなり、セキュリティ研究者の関心を喚起した。
近年、GPUに様々な脆弱性が発見されている。
我々は、シェーダ実行前に適切なレジスタ初期化ルーチンを欠いているGPU実装が、以前に実行されたシェーダカーネルの意図しないレジスタコンテンツリークにつながることを発見した。
上記の脆弱性が、Apple、NVIDIA、Qualcommの3つの主要ベンダーの製品に存在していることを示す。
この脆弱性は、GPUファームウェアに存在する不透明なスケジューリングとレジスタリマッピングアルゴリズムによって、漏洩したデータの再構築が複雑になるため、敵に固有の課題をもたらす。
この欠陥の現実的な影響を説明するために、GPU上のさまざまなワークロードを攻撃する上で、これらの課題をどのように解決できるかを説明します。
まず、初期化されていないレジスタがフラグメントシェーダーによって処理される任意のピクセルデータをリークする方法を示す。
さらに,畳み込みニューラルネットワーク(CNN)の中間データに対する情報漏洩攻撃を実装し,大規模言語モデル(LLM)の出力を漏洩・再構成する攻撃能力を示す。
関連論文リスト
- Less Memory Means smaller GPUs: Backpropagation with Compressed Activations [1.7065506903618906]
深層ニューラルネットワーク(DNN)の規模は、計算リソースの要件が等しく急速に増大している。
最近の多くのアーキテクチャ、特にLarge Language Modelsは、何千ものアクセラレーターを持つスーパーコンピュータを使って訓練されなければならない。
このアプローチにより、より長いトレーニングスケジュールのコストで、ピークメモリ使用量を29%削減することが可能になります。
論文 参考訳(メタデータ) (2024-09-18T11:57:05Z) - NeRF-XL: Scaling NeRFs with Multiple GPUs [72.75214892939411]
我々は、複数のGPUにまたがるニューラルラジアンス場(NeRF)を分散する原理的手法であるNeRF-XLを提案する。
パラメータ数を大きくして再構成品質を向上し,GPUの高速化を実現した。
我々は,25km2の都市部をカバーする258K画像を含む,これまでで最大規模のオープンソースデータセットMatrixCityを含む,さまざまなデータセットに対するNeRF-XLの有効性を実証した。
論文 参考訳(メタデータ) (2024-04-24T21:43:15Z) - WebGPU-SPY: Finding Fingerprints in the Sandbox through GPU Cache Attacks [0.7400926717561453]
ウェブブラウザにおけるマイクロアーキテクチャアタックのための新しいアタックベクトルを提案する。
我々は、被害者の活動をスパイするGPUの計算スタックに対するキャッシュサイドチャネルアタックを開発する。
我々は、GPUベースのキャッシュ攻撃が、上位100のWebサイトの指紋認証において、90の精度を達成することを実証した。
論文 参考訳(メタデータ) (2024-01-09T04:21:43Z) - Understanding Deep Gradient Leakage via Inversion Influence Functions [53.1839233598743]
Deep Gradient Leakage (DGL)は、勾配ベクトルからプライベートトレーニングイメージを復元する非常に効果的な攻撃である。
得られた画像とプライベート勾配との間の閉形式接続を確立する新しいインバージョンインフルエンス関数(I$2$F)を提案する。
I$2$Fは、一般的に異なるモデルアーキテクチャ、データセット、アタック実装、摂動に基づく防御に基づいてDGLを効果的に近似したことを実証的に実証した。
論文 参考訳(メタデータ) (2023-09-22T17:26:24Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Accelerating Sampling and Aggregation Operations in GNN Frameworks with
GPU Initiated Direct Storage Accesses [9.773813896475264]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための強力なツールとして登場している。
大規模グラフ上でのGNNのトレーニングは、効率的なデータアクセスとデータ移動方法が欠如しているため、依然として大きな課題である。
大規模グラフに対するGPU指向GNNトレーニングを実現するために,GPU Initiated Direct Storage Access (GIDS) データローダを提案する。
論文 参考訳(メタデータ) (2023-06-28T17:22:15Z) - EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens [57.354304637367555]
ビデオ表現学習のための驚くほど効率的なMVAアプローチであるEVERESTを提案する。
リッチなモーション特徴を含むトークンを発見し、事前トレーニングと微調整の両方の間、非形式的なトークンを破棄する。
提案手法は,MVAの計算とメモリ要求を大幅に低減する。
論文 参考訳(メタデータ) (2022-11-19T09:57:01Z) - Kubric: A scalable dataset generator [73.78485189435729]
KubricはPythonフレームワークで、PyBulletやBlenderとインターフェースして写真リアリスティックなシーンを生成する。
本研究では,3次元NeRFモデルの研究から光フロー推定まで,13種類の異なるデータセットを提示することで,Kubricの有効性を実証する。
論文 参考訳(メタデータ) (2022-03-07T18:13:59Z) - ASH: A Modern Framework for Parallel Spatial Hashing in 3D Perception [91.24236600199542]
ASHは、GPU上の並列空間ハッシュのためのモダンで高性能なフレームワークである。
ASHはより高いパフォーマンスを実現し、よりリッチな機能をサポートし、より少ないコード行を必要とする。
ASHとそのサンプルアプリケーションはOpen3Dでオープンソース化されている。
論文 参考訳(メタデータ) (2021-10-01T16:25:40Z) - CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU [8.633428365391666]
CryptGPUは、GPU上のすべての操作を実装するプライバシー保護機械学習のためのシステムです。
秘密共有された値を浮動小数点演算に埋め込む新しいインタフェースを導入する。
提案プロトコルは,プライベート推論の2倍から8倍,プライベートトレーニングの6倍から36倍の改善を実現している。
論文 参考訳(メタデータ) (2021-04-22T09:21:40Z) - How to 0wn NAS in Your Spare Time [11.997555708723523]
本研究では,キャッシュ側チャネル攻撃による情報漏洩を利用して,新しいディープラーニングシステムの主要コンポーネントを再構築するアルゴリズムを設計する。
我々は、マルウェア検出のための新しいデータ前処理パイプラインであるMalConvと、画像ネット分類のための新しいネットワークアーキテクチャであるProxylessNAS CPU-NASを再構築できることを実験的に実証した。
論文 参考訳(メタデータ) (2020-02-17T05:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。