論文の概要: Change Detection Between Optical Remote Sensing Imagery and Map Data via
Segment Anything Model (SAM)
- arxiv url: http://arxiv.org/abs/2401.09019v1
- Date: Wed, 17 Jan 2024 07:30:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 16:36:07.772541
- Title: Change Detection Between Optical Remote Sensing Imagery and Map Data via
Segment Anything Model (SAM)
- Title(参考訳): 光リモートセンシング画像とSegment Anything Model(SAM)による地図データ間の変化検出
- Authors: Hongruixuan Chen and Jian Song and Naoto Yokoya
- Abstract要約: 光高解像度画像とOpenStreetMap(OSM)データという2つの主要なリモートセンシングデータソース間の教師なしマルチモーダル変化検出について検討する。
我々はSAMのセグメンテーションプロセスを導くための2つの戦略、すなわち'no-prompt'と'box/mask prompt'メソッドを紹介した。
3つのデータセットの実験結果から,提案手法がより競争力のある結果が得られることが示唆された。
- 参考スコア(独自算出の注目度): 20.985372561774415
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised multimodal change detection is pivotal for time-sensitive tasks
and comprehensive multi-temporal Earth monitoring. In this study, we explore
unsupervised multimodal change detection between two key remote sensing data
sources: optical high-resolution imagery and OpenStreetMap (OSM) data.
Specifically, we propose to utilize the vision foundation model Segmentation
Anything Model (SAM), for addressing our task. Leveraging SAM's exceptional
zero-shot transfer capability, high-quality segmentation maps of optical images
can be obtained. Thus, we can directly compare these two heterogeneous data
forms in the so-called segmentation domain. We then introduce two strategies
for guiding SAM's segmentation process: the 'no-prompt' and 'box/mask prompt'
methods. The two strategies are designed to detect land-cover changes in
general scenarios and to identify new land-cover objects within existing
backgrounds, respectively. Experimental results on three datasets indicate that
the proposed approach can achieve more competitive results compared to
representative unsupervised multimodal change detection methods.
- Abstract(参考訳): 教師なしマルチモーダル変化検出は、時間に敏感なタスクと総合的なマルチテンポラル地球モニタリングに重要である。
本研究では、光高解像度画像とOpenStreetMap(OSM)データという、2つの主要なリモートセンシングデータソース間の教師なしマルチモーダル変化検出について検討する。
具体的には,視覚基盤モデルセグメンテーション・アプライシング・モデル (SAM) を用いて課題に対処することを提案する。
SAMの例外的なゼロショット転送機能を活用することで、光学画像の高品質なセグメンテーションマップを得ることができる。
したがって、この2つの異種データ形式をいわゆるセグメンテーション領域で直接比較することができる。
次に、SAMのセグメンテーションプロセスを導くための2つの戦略、すなわち'no-prompt'と'box/mask prompt'メソッドを紹介します。
この2つの戦略は、一般的なシナリオで土地被覆の変化を検出し、既存の背景の中で新しい土地被覆オブジェクトを識別するために設計されている。
3つのデータセットに対する実験結果から,提案手法は教師なしマルチモーダル変化検出法と比較して,より競争力のある結果が得られることが示された。
関連論文リスト
- SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
本稿では,リモートセンシングのためのマルチモーダルデータセットとマルチタスクオブジェクト検出(M2Det)という新しいタスクを提案する。
水平方向または指向方向の物体を、あらゆるセンサーから正確に検出するように設計されている。
この課題は、1)マルチモーダルモデリングの管理に関わるトレードオフ、2)マルチタスク最適化の複雑さに起因する。
論文 参考訳(メタデータ) (2024-12-30T02:47:51Z) - Boosting 3D Object Detection with Semantic-Aware Multi-Branch Framework [44.44329455757931]
自律走行では、LiDARセンサーは3Dポイントの雲の取得に不可欠であり、信頼できる幾何学的情報を提供する。
従来の前処理のサンプリング手法は意味的特徴を無視することが多く、詳細な損失や接地点干渉を引き起こす。
本稿では,Semantic-aware Multi-branch Smpling (SMS)モジュールとマルチビュー制約を用いたマルチブランチ2次元オブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-08T09:25:45Z) - DAMSDet: Dynamic Adaptive Multispectral Detection Transformer with
Competitive Query Selection and Adaptive Feature Fusion [82.2425759608975]
赤外可視物体検出は、赤外画像と可視画像の相補的情報を融合することにより、フルデイ物体検出の堅牢化を目指している。
本稿では,この2つの課題に対処する動的適応型マルチスペクトル検出変換器(DAMSDet)を提案する。
4つの公開データセットの実験は、他の最先端の手法と比較して大幅に改善されている。
論文 参考訳(メタデータ) (2024-03-01T07:03:27Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection [6.906936669510404]
本稿では,高分解能なリモートセンシング画像変化検出タスクを実現するために,二重注意生成対向ネットワークを提案する。
DAGANフレームワークは、85.01%がIoU、91.48%がF1スコアであり、LEVIRデータセットの先進的な手法よりもパフォーマンスが良い。
論文 参考訳(メタデータ) (2023-10-03T08:26:27Z) - Multimodal Across Domains Gaze Target Detection [18.41238482101682]
本稿では,3人称視点から捉えた単一画像における視線目標検出問題に対処する。
シーン内の人物が見ている場所を推測するために,マルチモーダルなディープアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-23T09:09:00Z) - Supervising Remote Sensing Change Detection Models with 3D Surface
Semantics [1.8782750537161614]
光RGBと地上レベル(AGL)マップペアを用いた共同学習のためのコントラスト表面画像事前学習(CSIP)を提案する。
次に、これらの事前訓練されたモデルをいくつかの建物セグメンテーションおよび変更検出データセット上で評価し、実際に、下流アプリケーションに関連する特徴を抽出することを示す。
論文 参考訳(メタデータ) (2022-02-26T23:35:43Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
MMPAT(MultiModality PAnoramic Multi-object Tracking framework)を提案する。
2次元パノラマ画像と3次元点雲を入力とし、マルチモーダルデータを用いて目標軌道を推定する。
提案手法は,検出タスクと追跡タスクの両方においてMMPATが最高性能を達成するJRDBデータセット上で評価する。
論文 参考訳(メタデータ) (2021-05-31T03:16:38Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。