論文の概要: MergeSAM: Unsupervised change detection of remote sensing images based on the Segment Anything Model
- arxiv url: http://arxiv.org/abs/2507.22675v1
- Date: Wed, 30 Jul 2025 13:37:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:18.236244
- Title: MergeSAM: Unsupervised change detection of remote sensing images based on the Segment Anything Model
- Title(参考訳): MergeSAM:Segment Anything Modelに基づくリモートセンシング画像の教師なし変化検出
- Authors: Meiqi Hu, Lingzhi Lu, Chengxi Han, Xiaoping Liu,
- Abstract要約: 本稿では、高解像度リモートセンシング画像のための革新的な教師なし変更検出手法であるMergeSAMを紹介する。
MaskMatchingとMaskSplittingという2つの新しい戦略は、オブジェクト分割、マージ、その他の複雑な変更といった現実世界の複雑さに対処するように設計されている。
- 参考スコア(独自算出の注目度): 4.8184525163335525
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, large foundation models trained on vast datasets have demonstrated exceptional capabilities in feature extraction and general feature representation. The ongoing advancements in deep learning-driven large models have shown great promise in accelerating unsupervised change detection methods, thereby enhancing the practical applicability of change detection technologies. Building on this progress, this paper introduces MergeSAM, an innovative unsupervised change detection method for high-resolution remote sensing imagery, based on the Segment Anything Model (SAM). Two novel strategies, MaskMatching and MaskSplitting, are designed to address real-world complexities such as object splitting, merging, and other intricate changes. The proposed method fully leverages SAM's object segmentation capabilities to construct multitemporal masks that capture complex changes, embedding the spatial structure of land cover into the change detection process.
- Abstract(参考訳): 近年、膨大なデータセットに基づいてトレーニングされた大規模な基礎モデルは、特徴抽出と一般的な特徴表現において例外的な能力を示している。
ディープラーニング駆動型大規模モデルの継続的な進歩は、教師なしの変更検出手法を加速させ、変更検出技術の実用性を高めることに大きな期待を示している。
本稿では,Segment Anything Model (SAM) に基づく,高解像度リモートセンシング画像のための革新的な教師なし変更検出手法であるMergeSAMを紹介する。
MaskMatchingとMaskSplittingという2つの新しい戦略は、オブジェクト分割、マージ、その他の複雑な変更といった現実世界の複雑さに対処するように設計されている。
提案手法はSAMのオブジェクトセグメンテーション機能を完全に活用し,複雑な変化を捉えたマルチテンポラルマスクを構築し,土地被覆の空間構造を変化検出プロセスに埋め込む。
関連論文リスト
- UrbanSAM: Learning Invariance-Inspired Adapters for Segment Anything Models in Urban Construction [51.54946346023673]
都市形態は本質的に複雑で、様々な形状と様々なスケールの不規則な物体がある。
Segment Anything Model (SAM) は複雑なシーンのセグメンテーションにおいて大きな可能性を示している。
本研究では,複雑な都市環境の分析に特化して設計されたSAMのカスタマイズ版であるUrbanSAMを提案する。
論文 参考訳(メタデータ) (2025-02-21T04:25:19Z) - Towards Fine-grained Interactive Segmentation in Images and Videos [21.22536962888316]
SAM2のバックボーン上に構築されたSAM2Refinerフレームワークを提案する。
このアーキテクチャによりSAM2は、画像とビデオの両方のきめ細かいセグメンテーションマスクを生成することができる。
さらに,マルチスケールのカスケード構造を用いてマスク特徴とエンコーダの階層的表現を融合させることによりマスクリファインメントモジュールを考案した。
論文 参考訳(メタデータ) (2025-02-12T06:38:18Z) - Mask Approximation Net: A Novel Diffusion Model Approach for Remote Sensing Change Captioning [14.994719390886774]
リモートセンシング画像変化記述は、リモートセンシング処理の領域における革新的なマルチモーダルタスクを表す。
本稿では,周波数領域雑音フィルタリングにより強化された拡散モデルを用いたデータ分散学習へ移行するパラダイムを提案する。
本稿では,リモートセンシングによる変化検出と記述のための提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-12-26T11:35:57Z) - Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
本稿では,GoDiffという新しい単一ドメインオブジェクト検出一般化手法を提案する。
擬似ターゲットドメインデータとソースドメインデータを統合することで、トレーニングデータセットを多様化する。
実験により,本手法は既存の検出器の一般化能力を高めるだけでなく,他の単一領域一般化手法のプラグ・アンド・プレイ拡張として機能することが示された。
論文 参考訳(メタデータ) (2024-12-18T13:03:00Z) - Hierarchical Attention Diffusion Networks with Object Priors for Video Change Detection [0.0]
本稿では,インスタンスレベルのマスキング,デノナイズ拡散モデル内のマルチスケールアテンション,ピクセル単位のセマンティック分類を組み合わせた一元的変更検出パイプラインを提案する。
従来の違い、シームズCNN、GANベースの検出器をF1とIoUで10-25ポイント上回っている。
論文 参考訳(メタデータ) (2024-08-20T07:54:08Z) - Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
このフレームワークには2つの新しいモジュールが含まれている: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
論文 参考訳(メタデータ) (2024-08-05T08:35:59Z) - Change-Agent: Towards Interactive Comprehensive Remote Sensing Change Interpretation and Analysis [28.3763053922823]
現在のRSICI技術は、変更検出と変更キャプションを包含しており、それぞれに包括的な解釈を提供する限界がある。
本稿では,ユーザ指示に従って包括的な変更解釈を実現するインタラクティブなChange-Agentを提案する。
Change-Agentは、マルチレベル変化解釈(MCI)モデルを目として、大きな言語モデル(LLM)を脳として統合する。
論文 参考訳(メタデータ) (2024-03-28T17:55:42Z) - Change Detection Between Optical Remote Sensing Imagery and Map Data via
Segment Anything Model (SAM) [20.985372561774415]
光高解像度画像とOpenStreetMap(OSM)データという2つの主要なリモートセンシングデータソース間の教師なしマルチモーダル変化検出について検討する。
我々はSAMのセグメンテーションプロセスを導くための2つの戦略、すなわち'no-prompt'と'box/mask prompt'メソッドを紹介した。
3つのデータセットの実験結果から,提案手法がより競争力のある結果が得られることが示唆された。
論文 参考訳(メタデータ) (2024-01-17T07:30:52Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
複雑な画像に大きな穴をあける際の可視像構造を生成するためのカスケード変調GAN(CM-GAN)を提案する。
各デコーダブロックにおいて、まず大域変調を適用し、粗い意味認識合成構造を行い、次に大域変調の出力に空間変調を適用し、空間適応的に特徴写像を更に調整する。
さらに,ネットワークがホール内の新たな物体を幻覚させるのを防ぐため,実世界のシナリオにおける物体除去タスクのニーズを満たすために,オブジェクト認識型トレーニングスキームを設計する。
論文 参考訳(メタデータ) (2022-03-22T16:13:27Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。