論文の概要: 3D Scene Geometry Estimation from 360$^\circ$ Imagery: A Survey
- arxiv url: http://arxiv.org/abs/2401.09252v1
- Date: Wed, 17 Jan 2024 14:57:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 15:37:11.813223
- Title: 3D Scene Geometry Estimation from 360$^\circ$ Imagery: A Survey
- Title(参考訳): 360$^\circ$画像からの3次元シーン形状の推定:サーベイ
- Authors: Thiago Lopes Trugillo da Silveira, Paulo Gamarra Lessa Pinto, Jeffri
Erwin Murrugarra Llerena, Claudio Rosito Jung
- Abstract要約: 本稿では,先駆的かつ最先端の3次元シーン形状推定手法に関する包括的調査を行う。
まず、球面カメラモデルの基本概念を再考し、最も一般的な取得技術と表現形式についてレビューする。
次に、単色レイアウトと深度推論のアプローチを調査し、球面データに適した学習ベースソリューションの最近の進歩を強調した。
- 参考スコア(独自算出の注目度): 1.3654846342364308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper provides a comprehensive survey on pioneer and state-of-the-art 3D
scene geometry estimation methodologies based on single, two, or multiple
images captured under the omnidirectional optics. We first revisit the basic
concepts of the spherical camera model, and review the most common acquisition
technologies and representation formats suitable for omnidirectional (also
called 360$^\circ$, spherical or panoramic) images and videos. We then survey
monocular layout and depth inference approaches, highlighting the recent
advances in learning-based solutions suited for spherical data. The classical
stereo matching is then revised on the spherical domain, where methodologies
for detecting and describing sparse and dense features become crucial. The
stereo matching concepts are then extrapolated for multiple view camera setups,
categorizing them among light fields, multi-view stereo, and structure from
motion (or visual simultaneous localization and mapping). We also compile and
discuss commonly adopted datasets and figures of merit indicated for each
purpose and list recent results for completeness. We conclude this paper by
pointing out current and future trends.
- Abstract(参考訳): 本論文は,全方位光学下で撮影された1,2,複数画像に基づいて,先駆的かつ最先端の3次元シーン形状推定手法に関する包括的調査を行う。
まず、球面カメラモデルの基本概念を再考し、全方向(360$^\circ$、球面またはパノラマ)の画像やビデオに適した、最も一般的な取得技術と表現形式についてレビューする。
次に、単色レイアウトと深度推論のアプローチを調査し、球面データに適した学習ベースソリューションの最近の進歩を強調した。
古典的なステレオマッチングは球面領域で修正され、スパースや密度のある特徴を検出し記述するための方法論が重要となる。
ステレオマッチングの概念は、複数のビューカメラの設定のために外挿され、ライトフィールド、マルチビューステレオ、モーションからの構造(または視覚的同時ローカライゼーションとマッピング)に分類される。
また、一般に採用されているデータセットと各目的に示されるメリットの数字をコンパイルし、議論し、最新の結果の完全性についてリストアップする。
本稿は,現状と今後の傾向を指摘して結論づける。
関連論文リスト
- DUSt3R: Geometric 3D Vision Made Easy [8.471330244002564]
Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections。
本定式化は単眼および両眼の再建症例を円滑に統一することを示す。
私たちの定式化はシーンの3Dモデルと深度情報を直接提供しますが、興味深いことに、シームレスに回復できます。
論文 参考訳(メタデータ) (2023-12-21T18:52:14Z) - State of the Art in Dense Monocular Non-Rigid 3D Reconstruction [100.9586977875698]
モノクル2D画像から変形可能なシーン(または非剛体)の3D再構成は、コンピュータビジョンとグラフィックスの長年、活発に研究されてきた領域である。
本研究は,モノクラー映像やモノクラービューの集合から,様々な変形可能な物体や複合シーンを高密度に非剛性で再現するための最先端の手法に焦点を当てる。
論文 参考訳(メタデータ) (2022-10-27T17:59:53Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Differentiable Stereopsis: Meshes from multiple views using
differentiable rendering [72.25348629612782]
少ない入力ビューとノイズの多いカメラから形状とテクスチャを再構成する多視点ステレオ手法である微分ステレオシステムを提案する。
従来のステレオプシスと現代的な微分可能レンダリングを組み合わせて、さまざまなトポロジと形状を持つオブジェクトのテクスチャ化された3Dメッシュを予測するエンドツーエンドモデルを構築します。
論文 参考訳(メタデータ) (2021-10-11T17:59:40Z) - LUCES: A Dataset for Near-Field Point Light Source Photometric Stereo [30.31403197697561]
LUCESは, 様々な素材の14個のオブジェクトからなる, 近距離Ld点光のための最初の実世界のデータセットである。
52個のLEDを計る装置は、カメラから10から30cm離れた位置にある各物体に点灯するように設計されている。
提案するデータセットにおける最新の近接場測光ステレオアルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-04-27T12:30:42Z) - A Divide et Impera Approach for 3D Shape Reconstruction from Multiple
Views [49.03830902235915]
物体の3次元形状を1つまたは複数の画像から推定することは、最近のディープラーニングによるブレークスルーによって人気を集めている。
本稿では,与えられた視点からの可視情報を統合することで,視点変化の再構築に頼ることを提案する。
提案手法を検証するために,相対的なポーズ推定と3次元形状再構成の観点から,ShapeNet参照ベンチマークの総合評価を行った。
論文 参考訳(メタデータ) (2020-11-17T09:59:32Z) - Shape and Viewpoint without Keypoints [63.26977130704171]
本研究では,1枚の画像から3次元形状,ポーズ,テクスチャを復元する学習フレームワークを提案する。
我々は,3次元形状,マルチビュー,カメラ視点,キーポイントの監督なしに画像収集を訓練した。
我々は、最先端のカメラ予測結果を取得し、オブジェクト間の多様な形状やテクスチャを予測することを学べることを示す。
論文 参考訳(メタデータ) (2020-07-21T17:58:28Z) - Single View Metrology in the Wild [94.7005246862618]
本研究では,物体の3次元の高さや地上のカメラの高さで表現されるシーンの絶対的なスケールを再現する,単一ビューメロジに対する新しいアプローチを提案する。
本手法は,被写体の高さなどの3Dエンティティによる未知のカメラとの相互作用から,弱い教師付き制約を抑えるために設計されたディープネットワークによって学習されたデータ駆動の先行情報に依存する。
いくつかのデータセットと仮想オブジェクト挿入を含むアプリケーションに対して、最先端の定性的かつ定量的な結果を示す。
論文 参考訳(メタデータ) (2020-07-18T22:31:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。